2019屆高三數(shù)學(xué)下學(xué)期第三次質(zhì)量檢測試題普通班理.doc_第1頁
2019屆高三數(shù)學(xué)下學(xué)期第三次質(zhì)量檢測試題普通班理.doc_第2頁
2019屆高三數(shù)學(xué)下學(xué)期第三次質(zhì)量檢測試題普通班理.doc_第3頁
2019屆高三數(shù)學(xué)下學(xué)期第三次質(zhì)量檢測試題普通班理.doc_第4頁
2019屆高三數(shù)學(xué)下學(xué)期第三次質(zhì)量檢測試題普通班理.doc_第5頁
已閱讀5頁,還剩6頁未讀 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡介

2019屆高三數(shù)學(xué)下學(xué)期第三次質(zhì)量檢測試題普通班理1、 選擇題:本大題共12小題,每小題5分,在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1已知,為虛數(shù)單位若復(fù)數(shù)是純虛數(shù)則的值為( )AB0C1D22設(shè)(為虛數(shù)單位),其中,是實(shí)數(shù),則等于A5BCD23為了從甲、乙兩人中選一人參加數(shù)學(xué)競賽,老師將二人最近的6次數(shù)學(xué)測試的分?jǐn)?shù)進(jìn)行統(tǒng)計(jì),甲、乙兩人的得分情況如莖葉圖所示,若甲、乙兩人的平均成績分別是,則下列說法正確的是( )A,乙比甲成績穩(wěn)定,應(yīng)選乙參加比賽B,甲比乙成績穩(wěn)定,應(yīng)選甲參加比賽C,甲比乙成績穩(wěn)定,應(yīng)選甲參加比賽D,乙比甲成績穩(wěn)定,應(yīng)選乙參加比賽4正方形中,點(diǎn),分別是,的中點(diǎn),那么( )ABCD5設(shè)集合,集合,則集合( )A B C D6閱讀如圖所示的程序框圖,運(yùn)行相應(yīng)的程序,則輸出的值為( )A1364 B340 C84 D607設(shè)變量滿足約束條件,則目標(biāo)函數(shù)的最小值為( )A B C D8要得到函數(shù)的圖象,只需將函數(shù)圖象上所有點(diǎn)的橫坐標(biāo)( )A伸長到原來的2倍(縱坐標(biāo)不變),再將得到的圖象向左平移個(gè)單位長度B伸長到原來的2倍(縱坐標(biāo)不變),再將得到的圖象向右平移個(gè)單位長度 C伸長到原來的倍(縱坐標(biāo)不變),再將得到的圖象向左平移個(gè)單位長度 D伸長到原來的倍(縱坐標(biāo)不變),再將得到的圖象向左平移個(gè)單位長度9. 已知拋物線的焦點(diǎn)為,準(zhǔn)線為,是上一點(diǎn),直線與拋物線交于兩點(diǎn),若,則( )A B8 C. 16 D10. 已知函數(shù)的圖象過點(diǎn),且在上單調(diào),同時(shí)的圖象向左平移個(gè)單位之后與原來的圖象重合,當(dāng),且時(shí),則( )A B -1 C. 1 D11. 下圖是某四棱錐的三視圖,網(wǎng)格紙上小正方形的邊長為1,則該四棱錐的外接球的表面積為( )A B C. D12. 設(shè)函數(shù)滿足,則時(shí),的最小值為( )A B C. D二、填空題:本大題共4個(gè)小題,每小題5分13已知向量,滿足,則向量在向量上的投影為 14已知展開式中的常數(shù)項(xiàng)為,則實(shí)數(shù) 15定義為個(gè)正數(shù)的“均倒數(shù)”,若已知數(shù)列的前 項(xiàng)的“均倒數(shù)”為,又,則 16已知三棱錐中,當(dāng)三棱錐的體積最大時(shí),其外接球的體積為 三、解答題:(本題包括6小題,共70分。要求寫出證明過程或演算步驟)17.(本小題滿分分) 中,角的對(duì)邊分別為,已知. ()求角的大??;()點(diǎn)為邊上的一點(diǎn),記,若, ,求與的值。18.(本小題滿分分) 某幼兒園有教師30人,對(duì)他們進(jìn)行年齡狀況和受教育程度的調(diào)查,其結(jié)果如下:本科研究生合計(jì)35歲以下5273550歲(含35歲和50歲)1732050歲以上213(1)從該幼兒園教師中隨機(jī)抽取一人,求具有研究生學(xué)歷的概率;(2)從幼兒園所有具有研究生學(xué)歷的教師中隨機(jī)抽取2人,求有35歲以下的研究生或50歲以上的研究生的概率.19.(本小題滿分12分)已知數(shù)列an的前n項(xiàng)和為Sn,Sn=an+n-1,設(shè)(1)求數(shù)列an的通項(xiàng)公式;(2)設(shè)cn=,求數(shù)列cn的前n和Tn;20.(本小題滿分12分) 如圖,在多面體EF-ABCD中,底面ABCD是梯形,ABCD,AD=DC=CB=2,ABC=60,平面ACEF平面ABCD,四邊形ACEF是菱形,CAF=60.()求證:BFAE;()求二面角B-EF-D的平面角的正切值.21已知函數(shù)()在處的切線與直線平行.(1)求的值并討論函數(shù)在上的單調(diào)性;(2)若函數(shù)(為常數(shù))有兩個(gè)零點(diǎn)()求實(shí)數(shù)的取值范圍;求證: 22選修4-4:坐標(biāo)系與參數(shù)方程在直角坐標(biāo)系中,曲線的參數(shù)方程為,(為參數(shù),),以坐標(biāo)原點(diǎn)為極點(diǎn),軸的正半軸為極軸建立極坐標(biāo)系,已知直線的極坐標(biāo)方程為()設(shè)是曲線上的一個(gè)動(dòng)點(diǎn),當(dāng)時(shí),求點(diǎn)到直線的距離的最小值()若曲線上所有的點(diǎn)均在直線的右下方,求的取值范圍23選修4-5:不等式選講已知函數(shù),若, 成立,且.(1)求的值;(2)若,且, , ,求的最小值.1-5.CADD C 6-10.BDAAB 11、12:CD13 14 15 16 17.解:()由已知,得 , . .4分 ()在中,, ,. .8分為鈍角,為銳角,在中,由余弦定理,得,所以. .12分18.解(1)設(shè):“從該幼兒園教師中隨機(jī)抽取一人,具有研究生學(xué)歷”為事件A,由題可知幼兒園總共有教師30人,其中“具有研究生學(xué)歷”的共6人.則P(A).即從該幼兒園教師中隨機(jī)抽取一人,具有研究生學(xué)歷的概率為.(2)設(shè)幼兒園中35歲以下具有研究生學(xué)歷的教師為A1,A2,3550歲(含35歲和50歲)具有研究生學(xué)歷的教師為B1,B2,B3,50歲以上具有研究生學(xué)歷的教師為C,從幼兒園所有具有研究生學(xué)歷的教師中隨機(jī)抽取2人,所有可能結(jié)果有15個(gè),它們是:(A1,A2),(A1,B1),(A1,B2),(A1,B3),(A1,C),(A2,B1),(A2,B2),(A2,B3),(A2,C),(B1,B2),(B1,B3),(B1,C),(B2,B3),(B2,C),(B3,C),記“從幼兒園所有具有研究生學(xué)歷的教師中隨機(jī)抽取2人,有35歲以下的研究生或50歲以上的研究生”為事件D,則D中的結(jié)果共有12個(gè),它們是:(A1,A2),(A1,B1),(A1,B2),(A1,B3),(A1,C),(A2,B1),(A2, B2),(A2,B3),(A2,C),(B1,C),(B2,C),(B2,C),故所求概率為P(D).即從幼兒園所有具有研究生學(xué)歷的教師中隨機(jī)抽取2人,有35歲以下的研究生或50歲以上的研究生的概率為.19. (本題滿分12分)解:()當(dāng)n=1時(shí), 當(dāng)時(shí),由Sn=an+n-1 ,所以Sn-1=an-1+(n-1)-1 - 得:,即, .6分()由cn= .12分20(本題滿分12分)()依題意,在等腰梯形中,連接,四邊形ACEF是菱形, ()取的中點(diǎn),連接,因?yàn)樗倪呅问橇庑?,?所以由平面幾何易知,. 故此可以、分別為、軸建立空間直角坐標(biāo)系,各點(diǎn)的坐標(biāo)依次為:設(shè)平面BEF和平面DEF的法向量分別為同理,故二面角的平面角的正切值為21.【答案】(1)見解析;(2);見解析.【解析】試題分析:(1)根據(jù)切線的斜率可知在處的導(dǎo)數(shù),從而求出的值,再根據(jù)導(dǎo)數(shù)的正負(fù)討論函數(shù)的單調(diào)區(qū)間即可;(2)根據(jù)函數(shù)有兩個(gè)零點(diǎn)知,函數(shù)的最小值要小于0即可求出;設(shè),構(gòu)造函數(shù)(),利用導(dǎo)數(shù)確定函數(shù)單調(diào)性,再根據(jù)即可求證.試題解析:(1),.令,則時(shí), ; 時(shí), .則在上單調(diào)遞增,在上單調(diào)遞減.在時(shí), ,即時(shí), ,函數(shù)在上單調(diào)遞減.(2)由條件可知, ,則在上單調(diào)遞減,在上單調(diào)遞增;要使函數(shù)有兩個(gè)零點(diǎn),則.證明:由可知,又是兩個(gè)零點(diǎn)令()則,即又在上單調(diào)遞減,即22.【答案】(1)點(diǎn)到直線的距離的最小值為;(2)的取值范圍為.【解析】試題分析:()利用點(diǎn)到直線的距離公式,結(jié)合三角函數(shù)化一公式求最值;()由題意對(duì),有恒成立,轉(zhuǎn)化為最值問題.試題解析:()由,得,化成直角坐標(biāo)方程,得,即直線的方程為. 依題意,設(shè),則到直線的距離 ,當(dāng),即時(shí),.故點(diǎn)到直線的距離的最小值為.()曲線上的

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。

最新文檔

評(píng)論

0/150

提交評(píng)論