高中數(shù)學(xué)第二章三角形中的幾何計算教案北師大版.doc_第1頁
高中數(shù)學(xué)第二章三角形中的幾何計算教案北師大版.doc_第2頁
高中數(shù)學(xué)第二章三角形中的幾何計算教案北師大版.doc_第3頁
高中數(shù)學(xué)第二章三角形中的幾何計算教案北師大版.doc_第4頁
高中數(shù)學(xué)第二章三角形中的幾何計算教案北師大版.doc_第5頁
已閱讀5頁,還剩2頁未讀, 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報或認(rèn)領(lǐng)

文檔簡介

2 三角形中的幾何計算教學(xué)目的:1進(jìn)一步熟悉正、余弦定理內(nèi)容;2能夠應(yīng)用正、余弦定理進(jìn)行邊角關(guān)系的相互轉(zhuǎn)化;3能夠利用正、余弦定理判斷三角形的形狀;4能夠利用正、余弦定理證明三角形中的三角恒等式教學(xué)重點(diǎn):利用正、余弦定理進(jìn)行邊角互換時的轉(zhuǎn)化方向教學(xué)難點(diǎn): 三角函數(shù)公式變形與正、余弦定理的聯(lián)系授課類型:新授課課時安排:1課時教 具:多媒體、實(shí)物投影儀教學(xué)方法:啟發(fā)引導(dǎo)式1啟發(fā)學(xué)生在證明三角形問題或者三角恒等式時,要注意正弦定理、余弦定理的適用題型與所證結(jié)論的聯(lián)系,并注意特殊正、余弦關(guān)系的應(yīng)用,比如互補(bǔ)角的正弦值相等,互補(bǔ)角的余弦值互為相反數(shù)等;2引導(dǎo)學(xué)生總結(jié)三角恒等式的證明或者三角形形狀的判斷,重在發(fā)揮正、余弦定理的邊角互換作用教學(xué)過程:一、復(fù)習(xí)引入:正弦定理:余弦定理:,二、講解范例:例1在任一ABC中求證:證:左邊=0=右邊例2 在ABC中,已知,B=45 求A、C及c解一:由正弦定理得:B=4590即ba A=60或120當(dāng)A=60時C=75當(dāng)A=120時C=15解二:設(shè)c=x由余弦定理將已知條件代入,整理:解之:當(dāng)時從而A=60,C=75當(dāng)時同理可求得:A=120,C=15例3 在ABC中,BC=a, AC=b, a, b是方程的兩個根,且2cos(A+B)=1 求(1)角C的度數(shù) (2)AB的長度 (3)ABC的面積解:(1)cosC=cosp-(A+B)=-cos(A+B)=-C=120(2)由題設(shè):AB2=AC2+BC2-2ACBCosC即AB=(3)SABC=例4 如圖,在四邊形ABCD中,已知ADCD, AD=10, AB=14, BDA=60, BCD=135求BC的長解:在ABD中,設(shè)BD=x則即整理得:解之:(舍去)由余弦定理:例5 ABC中,若已知三邊為連續(xù)正整數(shù),最大角為鈍角,1求最大角 ; 2求以此最大角為內(nèi)角,夾此角兩邊之和為4的平行四邊形的最大面積解:1設(shè)三邊且C為鈍角 解得或3 但時不能構(gòu)成三角形應(yīng)舍去當(dāng)時 2設(shè)夾C角的兩邊為S當(dāng)時S最大=例6 在ABC中,AB5,AC3,D為BC中點(diǎn),且AD4,求BC邊長分析:此題所給題設(shè)條件只有邊長,應(yīng)考慮在假設(shè)BC為后,建立關(guān)于的方程而正弦定理涉及到兩個角,故不可用此時應(yīng)注意余弦定理在建立方程時所發(fā)揮的作用因為D為BC中點(diǎn),所以BD、DC可表示為,然用利用互補(bǔ)角的余弦互為相反數(shù)這一性質(zhì)建立方程解:設(shè)BC邊為,則由D為BC中點(diǎn),可得BDDC,在ADB中,cosADB在ADC中,cosADC又ADBADC180cosADBcos(180ADC)cosADC解得,2, 所以,BC邊長為2評述:此題要啟發(fā)學(xué)生注意余弦定理建立方程的功能,體會互補(bǔ)角的余弦值互為相反數(shù)這一性質(zhì)的應(yīng)用,并注意總結(jié)這一性質(zhì)的適用題型另外,對于本節(jié)的例2,也可考慮上述性質(zhì)的應(yīng)用來求解sinA,思路如下:由三角形內(nèi)角平分線性質(zhì)可得,設(shè)BD5,DC3,則由互補(bǔ)角ADC、ADB的余弦值互為相反數(shù)建立方程,求出BC后,再結(jié)合余弦定理求出cosA,再由同角平方關(guān)系求出sinA三、課堂練習(xí):1半徑為1的圓內(nèi)接三角形的面積為025,求此三角形三邊長的乘積解:設(shè)ABC三邊為a,b,c則ABC又,其中R為三角形外接圓半徑, abc4RSABC410251所以三角形三邊長的乘積為1評述:由于題設(shè)條件有三角形外接圓半徑,故聯(lián)想正弦定理:,其中R為三角形外接圓半徑,與含有正弦的三角形面積公式ABC發(fā)生聯(lián)系,對abc進(jìn)行整體求解2在ABC中,已知角B45,D是BC邊上一點(diǎn),AD5,AC7,DC3,求AB解:在ADC中,cosC又0C180,sinC在ABC中,AB評述:此題在求解過程中,先用余弦定理求角,再用正弦定理求邊,要求學(xué)生注意正、余弦定理的綜合運(yùn)用3在ABC中,已知cosA,sinB,求cosC的值解:cosAcos45,0A45A90, sinAsinBsin30,0B0B30或150B180若B150,則BA180與題意不符0B30cosBcos(AB)cosAcosBsinAsinB又C180(AB)cosCcos180(AB)cos(AB)評述:此題要求學(xué)生在利用同角的正、余弦平方關(guān)系時,應(yīng)根據(jù)已知的三角函數(shù)值具體確定角的范圍,以便對正負(fù)進(jìn)行取舍,在確定角的范圍時,通常是與已知角接近的特殊角的三角函數(shù)值進(jìn)行比較四、小結(jié)通過本節(jié)學(xué)習(xí),我們進(jìn)一步熟悉了三角函數(shù)公式及三角形的有關(guān)性質(zhì),綜合運(yùn)用了正、余弦定理求解三角形的有關(guān)問題,要求大家注意常見解題方法與解題技巧的總結(jié),不斷提高三角形問題的求解能力五、課后作業(yè):六、板書設(shè)計(略)七、課后記及備用資料:1正、余弦定理的綜合運(yùn)用余弦定理是解斜三角形中用到的主要定理,若將正弦定理代入得:sin2Asin2Bsin2C2sinBsinCcosA這是只含有三角形三個角的一種關(guān)系式,利用這一定理解題,簡捷明快,下面舉例說明之例1在ABC中,已知sin2Bsin2Csin2AsinAsinC,求B的度數(shù)解:由定理得sin2Bsin2Asin2C2sinAsinCcosB,2sinAsinCcosBsinAsinCsinAsinC0 cosB150例2求sin210cos240sin10cos40的值解:原式sin210sin250sin10sin50在sin2Asin2Bsin2C2sinBsinCcosA中,令B10,C50,則A120sin2120sin210sin2502sin10sin50cos120sin210sin250sin10sin50()2例3在ABC中,已知2cosBsinCsinA,試判定ABC的形狀解:在原等式兩邊同乘以sinA得:2cosBsinAsinCsin2A,由定理得sin2Asin2Csin2sin2A,sin2Csin2BBC故ABC是等腰三角形2一題多證在ABC中已知a2bcosC,求證:ABC為等腰三角形證法一:欲證ABC為等腰三角形可證明其中有兩角相等,因而在已知條件中化去邊元素,使只剩含角的三角函數(shù)由正弦定理得a2bcosC,即2cosCsinBsinAsin(BC)sinBcosCcosBsinCsinBcosCcosBsinC0即sin(BC)0,BC()B、C是三角形的內(nèi)角

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論