



全文預(yù)覽已結(jié)束
下載本文檔
版權(quán)說(shuō)明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡(jiǎn)介
轉(zhuǎn)淺談協(xié)方差矩陣 聲明:本文轉(zhuǎn)自穎風(fēng)的博客,原文地址:/2010/08/31/covariance/今天看論文的時(shí)候又看到了協(xié)方差矩陣這個(gè)破東西,以前看模式分類的時(shí)候就特困擾,沒(méi)想到現(xiàn)在還是搞不清楚,索性開(kāi)始查協(xié)方差矩陣的資料,惡補(bǔ)之后決定馬上記錄下來(lái),嘿嘿本文我將用自認(rèn)為循序漸進(jìn)的方式談?wù)剠f(xié)方差矩陣。統(tǒng)計(jì)學(xué)的基本概念學(xué)過(guò)概率統(tǒng)計(jì)的孩子都知道,統(tǒng)計(jì)里最基本的概念就是樣本的均值,方差,或者再加個(gè)標(biāo)準(zhǔn)差。首先我們給你一個(gè)含有n個(gè)樣本的集合,依次給出這些概念的公式描述,這些高中學(xué)過(guò)數(shù)學(xué)的孩子都應(yīng)該知道吧,一帶而過(guò)。均值:標(biāo)準(zhǔn)差:方差:很顯然,均值描述的是樣本集合的中間點(diǎn),它告訴我們的信息是很有限的,而標(biāo)準(zhǔn)差給我們描述的則是樣本集合的各個(gè)樣本點(diǎn)到均值的距離之平均。以這兩個(gè)集合為例,0,8,12,20和8,9,11,12,兩個(gè)集合的均值都是10,但顯然兩個(gè)集合差別是很大的,計(jì)算兩者的標(biāo)準(zhǔn)差,前者是8.3,后者是1.8,顯然后者較為集中,故其標(biāo)準(zhǔn)差小一些,標(biāo)準(zhǔn)差描述的就是這種“散布度”。之所以除以n-1而不是除以n,是因?yàn)檫@樣能使我們以較小的樣本集更好的逼近總體的標(biāo)準(zhǔn)差,即統(tǒng)計(jì)上所謂的“無(wú)偏估計(jì)”。而方差則僅僅是標(biāo)準(zhǔn)差的平方。為什么需要協(xié)方差?上面幾個(gè)統(tǒng)計(jì)量看似已經(jīng)描述的差不多了,但我們應(yīng)該注意到,標(biāo)準(zhǔn)差和方差一般是用來(lái)描述一維數(shù)據(jù)的,但現(xiàn)實(shí)生活我們常常遇到含有多維數(shù)據(jù)的數(shù)據(jù)集,最簡(jiǎn)單的大家上學(xué)時(shí)免不了要統(tǒng)計(jì)多個(gè)學(xué)科的考試成績(jī)。面對(duì)這樣的數(shù)據(jù)集,我們當(dāng)然可以按照每一維獨(dú)立的計(jì)算其方差,但是通常我們還想了解更多,比如,一個(gè)男孩子的猥瑣程度跟他受女孩子歡迎程度是否存在一些聯(lián)系啊,嘿嘿協(xié)方差就是這樣一種用來(lái)度量?jī)蓚€(gè)隨機(jī)變量關(guān)系的統(tǒng)計(jì)量,我們可以仿照方差的定義:來(lái)度量各個(gè)維度偏離其均值的程度,標(biāo)準(zhǔn)差可以這么來(lái)定義:協(xié)方差的結(jié)果有什么意義呢?如果結(jié)果為正值,則說(shuō)明兩者是正相關(guān)的(從協(xié)方差可以引出“相關(guān)系數(shù)”的定義),也就是說(shuō)一個(gè)人越猥瑣就越受女孩子歡迎,嘿嘿,那必須的結(jié)果為負(fù)值就說(shuō)明負(fù)相關(guān)的,越猥瑣女孩子越討厭,可能嗎?如果為0,也是就是統(tǒng)計(jì)上說(shuō)的“相互獨(dú)立”。從協(xié)方差的定義上我們也可以看出一些顯而易見(jiàn)的性質(zhì),如:協(xié)方差多了就是協(xié)方差矩陣上一節(jié)提到的猥瑣和受歡迎的問(wèn)題是典型二維問(wèn)題,而協(xié)方差也只能處理二維問(wèn)題,那維數(shù)多了自然就需要計(jì)算多個(gè)協(xié)方差,比如n維的數(shù)據(jù)集就需要計(jì)算個(gè)協(xié)方差,那自然而然的我們會(huì)想到使用矩陣來(lái)組織這些數(shù)據(jù)。給出協(xié)方差矩陣的定義:這個(gè)定義還是很容易理解的,我們可以舉一個(gè)簡(jiǎn)單的三維的例子,假設(shè)數(shù)據(jù)集有三個(gè)維度,則協(xié)方差矩陣為可見(jiàn),協(xié)方差矩陣是一個(gè)對(duì)稱的矩陣,而且對(duì)角線是各個(gè)維度上的方差。Matlab協(xié)方差實(shí)戰(zhàn)上面涉及的內(nèi)容都比較容易,協(xié)方差矩陣似乎也很簡(jiǎn)單,但實(shí)戰(zhàn)起來(lái)就很容易讓人迷茫了。必須要明確一點(diǎn),協(xié)方差矩陣計(jì)算的是不同維度之間的協(xié)方差,而不是不同樣本之間的。這個(gè)我將結(jié)合下面的例子說(shuō)明,以下的演示將使用Matlab,為了說(shuō)明計(jì)算原理,不直接調(diào)用Matlab的cov函數(shù)(藍(lán)色部分為Matlab代碼)。首先,隨機(jī)產(chǎn)生一個(gè)10*3維的整數(shù)矩陣作為樣本集,10為樣本的個(gè)數(shù),3為樣本的維數(shù)。MySample = fix(rand(10,3)*50)根據(jù)公式,計(jì)算協(xié)方差需要計(jì)算均值,那是按行計(jì)算均值還是按列呢,我一開(kāi)始就老是困擾這個(gè)問(wèn)題。前面我們也特別強(qiáng)調(diào)了,協(xié)方差矩陣是計(jì)算不同維度間的協(xié)方差,要時(shí)刻牢記這一點(diǎn)。樣本矩陣的每行是一個(gè)樣本,每列為一個(gè)維度,所以我們要按列計(jì)算均值。為了描述方便,我們先將三個(gè)維度的數(shù)據(jù)分別賦值:dim1 = MySample(:,1);dim2 = MySample(:,2);dim3 = MySample(:,3);計(jì)算dim1與dim2,dim1與dim3,dim2與dim3的協(xié)方差:sum( (dim1-mean(dim1) .* (dim2-mean(dim2) ) / ( size(MySample,1)-1 ) % 得到 74.5333sum( (dim1-mean(dim1) .* (dim3-mean(dim3) ) / ( size(MySample,1)-1 )% 得到 -10.0889sum( (dim2-mean(dim2) .* (dim3-mean(dim3) ) / ( size(MySample,1)-1 )% 得到 -10*000搞清楚了這個(gè)后面就容易多了,協(xié)方差矩陣的對(duì)角線就是各個(gè)維度上的方差,下面我們依次計(jì)算:std(dim1)2 % 得到 108.3222std(dim2)2% 得到 260.6222std(dim3)2% 得到 94.1778這樣,我們就得到了計(jì)算協(xié)方差矩陣所需要的所有數(shù)據(jù),調(diào)用Matlab自帶的cov函數(shù)進(jìn)行驗(yàn)證:cov(MySample)把我們計(jì)算的數(shù)據(jù)對(duì)號(hào)入座,是不是一摸一樣?Update:今天突然發(fā)現(xiàn),原來(lái)協(xié)方差矩陣還可以這樣計(jì)算,先讓樣本矩陣中心化,即每一維度減去該維度的均值,使每一維度上的均值為0,然后直接用新的到的樣本矩陣乘上它的轉(zhuǎn)置,然后除以(N-1)即可。其實(shí)這種方法也是由前面的公式通道而來(lái),只不過(guò)理解起來(lái)不是很直觀,但在抽象的公式推導(dǎo)時(shí)還是很常用的!同樣給出Matlab代碼實(shí)現(xiàn):X = MySample repmat(mean(MySample),10,1); % 中心化樣本矩陣,使各維度均值為0C = (X*X)./(size(X,1)-1)總結(jié)理解協(xié)方差矩陣的關(guān)鍵就在于牢記它計(jì)算的是不同維度之間的協(xié)方差,而不是不同樣本之
溫馨提示
- 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 2025年養(yǎng)老機(jī)構(gòu)醫(yī)養(yǎng)結(jié)合運(yùn)營(yíng)模式創(chuàng)新與可持續(xù)發(fā)展報(bào)告001
- 紡織服裝行業(yè)智能化生產(chǎn)對(duì)企業(yè)管理創(chuàng)新研究報(bào)告
- 天然植物精油護(hù)膚品牌在2025年銷售渠道拓展研究報(bào)告
- 2025年元宇宙社交平臺(tái)虛擬現(xiàn)實(shí)教育游戲化市場(chǎng)前景:用戶體驗(yàn)與教育效果報(bào)告
- 2025年醫(yī)院電子病歷系統(tǒng)在醫(yī)院信息化中的數(shù)據(jù)加密優(yōu)化報(bào)告
- 2025年工業(yè)互聯(lián)網(wǎng)平臺(tái)網(wǎng)絡(luò)隔離技術(shù):工業(yè)互聯(lián)網(wǎng)安全防護(hù)市場(chǎng)前景分析報(bào)告001
- 2025年醫(yī)藥行業(yè)CRO模式下的臨床試驗(yàn)倫理審查與合規(guī)報(bào)告
- 新一代大學(xué)英語(yǔ)(第二版)綜合教程1-U4-教師用書(shū) Unit 4 Life at your fingertips
- 2025年醫(yī)藥流通企業(yè)供應(yīng)鏈優(yōu)化與成本控制智能供應(yīng)鏈管理供應(yīng)鏈管理采購(gòu)管理優(yōu)化報(bào)告
- 保險(xiǎn)競(jìng)賽題庫(kù)及答案詳解
- 河南近10年中考真題道德與法治2014-2023年含答案
- 山姆配送服務(wù)流程
- 湖南省長(zhǎng)郡中學(xué)、雅禮中學(xué)等四校2024屆高一數(shù)學(xué)第二學(xué)期期末調(diào)研試題含解析
- 關(guān)節(jié)僵硬護(hù)理查房
- 國(guó)開(kāi)2023秋《現(xiàn)-代-管-理-專-題》北京-第四次作業(yè)參考答案
- 長(zhǎng)城招聘的心理測(cè)評(píng)答案
- 云災(zāi)備與數(shù)據(jù)恢復(fù)策略
- 中小學(xué)食堂工作從業(yè)人員安全培訓(xùn)會(huì)議記錄(40學(xué)時(shí)全)
- 國(guó)開(kāi)《工程經(jīng)濟(jì)與管理》形考任務(wù)1-12試題及答案
- 幼兒園玩教具明細(xì)表
- 普速《鐵路技術(shù)管理規(guī)程》普速鐵路部分
評(píng)論
0/150
提交評(píng)論