自然語(yǔ)言處理NLP.ppt_第1頁(yè)
自然語(yǔ)言處理NLP.ppt_第2頁(yè)
自然語(yǔ)言處理NLP.ppt_第3頁(yè)
自然語(yǔ)言處理NLP.ppt_第4頁(yè)
自然語(yǔ)言處理NLP.ppt_第5頁(yè)
已閱讀5頁(yè),還剩9頁(yè)未讀, 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說(shuō)明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡(jiǎn)介

1 StatisticalNLP Lecture8 StatisticalInference n gramModelsoverSparseData 2 Overview StatisticalInferenceconsistsoftakingsomedata generatedinaccordancewithsomeunknownprobabilitydistribution andthenmakingsomeinferencesaboutthisdistribution Therearethreeissuestoconsider DividingthetrainingdataintoequivalenceclassesFindingagoodstatisticalestimatorforeachequivalenceclassCombiningmultipleestimators 3 FormingEquivalenceClassesI ClassificationProblem trytopredictthetargetfeaturebasedonvariousclassificatoryfeatures ReliabilityversusdiscriminationMarkovAssumption Onlythepriorlocalcontextaffectsthenextentry n 1 thMarkovModelorn gramSizeofthen grammodelsversusnumberofparameters wewouldlikentobelarge butthenumberofparametersincreasesexponentiallywithn Thereexistotherwaystoformequivalenceclassesofthehistory buttheyrequiremorecomplicated methods willusen gramshere 4 StatisticalEstimatorsI Overview Goal ToderiveagoodprobabilityestimateforthetargetfeaturebasedonobserveddataRunningExample Fromn gramdataP w1 wn spredictP wn w1 wn 1 Solutionswewilllookat MaximumLikelihoodEstimationLaplace s Lidstone sandJeffreys Perks LawsHeldOutEstimationCross ValidationGood TuringEstimation 5 StatisticalEstimatorsII MaximumLikelihoodEstimation PMLE w1 wn C w1 wn N whereC w1 wn isthefrequencyofn gramw1 wnPMLE wn w1 wn 1 C w1 wn C w1 wn 1 ThisestimateiscalledMaximumLikelihoodEstimate MLE becauseitisthechoiceofparametersthatgivesthehighestprobabilitytothetrainingcorpus MLEisusuallyunsuitableforNLPbecauseofthesparsenessofthedata UseaDiscountingor Smoothingtechnique 6 StatisticalEstimatorsIII SmoothingTechniques Laplace PLAP w1 wn C w1 wn 1 N B whereC w1 wn isthefrequencyofn gramw1 wnandBisthenumberofbinstraininginstancesaredividedinto AddingOneProcessTheideaistogivealittlebitoftheprobabilityspacetounseenevents However inNLPapplicationsthatareverysparse Laplace sLawactuallygivesfartoomuchoftheprobabilityspacetounseenevents 7 StatisticalEstimatorsIV SmoothingTechniques LidstoneandJeffrey Perks Sincetheaddingoneprocessmaybeaddingtoomuch wecanaddasmallervalue PLID w1 wn C w1 wn N B whereC w1 wn isthefrequencyofn gramw1 wnandBisthenumberofbinstraininginstancesaredividedinto and 0 Lidstone sLawIf 1 2 Lidstone sLawcorrespondstotheexpectationofthelikelihoodandiscalledtheExpectedLikelihoodEstimation ELE ortheJeffreys PerksLaw 8 StatisticalEstimatorsV RobustTechniques HeldOutEstimation Foreachn gram w1 wn wecomputeC1 w1 wn andC2 w1 wn thefrequenciesofw1 wnintrainingandheldoutdata respectively LetNrbethenumberofbigramswithfrequencyrinthetrainingtext LetTrbethetotalnumberoftimesthatalln gramsthatappearedrtimesinthetrainingtextappearedintheheldoutdata Anestimatefortheprobabilityofoneofthesen gramis Pho w1 wn Tr NrN whereC w1 wn r 9 StatisticalEstimatorsVI RobustTechniques Cross Validation HeldOutestimationisusefulifthereisalotofdataavailable Ifnot itisusefultouseeachpartofthedatabothastrainingdataandheldoutdata DeletedEstimation Jelinek Mercer 1985 LetNrabethenumberofn gramsoccurringrtimesintheathpartofthetrainingdataandTrabbethetotaloccurrencesofthosebigramsfrompartainpartb Pdel w1 wn Tr01 Tr10 N Nr0 Nr1 whereC w1 wn r Leave One Out Neyetal 1997 10 StatisticalEstimatorsVI RelatedApproach Good TuringEstimator IfC w1 wn r 0 PGT w1 wn r Nwherer r 1 S r 1 S r andS r isasmoothedestimateoftheexpectationofNr IfC w1 wn 0 PGT w1 wn N1 N0N SimpleGood Turing Gale Sampson 1995 Asasmoothingcurve useNr arb withb 1 andestimateaandbbysimplelinearregressiononthelogarithmicformofthisequation logNr loga blogr ifrislarge Forlowvaluesofr usethemeasuredNrdirectly 11 CombiningEstimatorsI Overview Ifwehaveseveralmodelsofhowthehistorypredictswhatcomesnext thenwemightwishtocombinetheminthehopeofproducinganevenbettermodel CombinationMethodsConsidered SimpleLinearInterpolationKatz sBackingOffGeneralLinearInterpolation 12 CombiningEstimatorsII SimpleLinearInterpolation Onewayofsolvingthesparsenessinatrigrammodelistomixthatmodelwithbigramandunigrammodelsthatsufferlessfromdatasparseness Thiscanbedonebylinearinterpolation alsocalledfinitemixturemodels Whenthefunctionsbeinginterpolatedalluseasubsetoftheconditioninginformationofthemostdiscriminatingfunction thismethodisreferredtoasdeletedinterpolation Pli wn wn 2 wn 1 1P1 wn 2P2 wn wn 1 3P3 wn wn 1 wn 2 where0 i 1and i i 1TheweightscanbesetautomaticallyusingtheExpectation Maximization EM algorithm 13 CombiningEstimatorsII Katz sBackingOffModel Inback offmodels differentmodelsareconsultedinorderdependingontheirspecificity Ifthen gramofconcernhasappearedmorethanktimes thenann gramestimateisusedbutanamountoftheMLEestimategetsdiscounted itisreservedforunseenn grams Ifthen gramoccurredktimesorless thenwewilluseanestimatefromashortern gram back offprobability normalizedbytheamountofprobabilityremainingandtheamountofdatacoveredbythisestimate Theprocesscontinuesrecursively 14 CombiningEstimatorsII GeneralLinearInterpolation Insi

溫馨提示

  • 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。

評(píng)論

0/150

提交評(píng)論