2013年數三考研大綱.doc_第1頁
2013年數三考研大綱.doc_第2頁
2013年數三考研大綱.doc_第3頁
2013年數三考研大綱.doc_第4頁
2013年數三考研大綱.doc_第5頁
已閱讀5頁,還剩8頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領

文檔簡介

2013年研究生入學統(tǒng)一考試數學(三)大綱考試科目:微積分、線性代數、概率論與數理統(tǒng)計考試形式和試卷結構一、試卷滿分及考試時間試卷滿分為150分,考試時間為180分鐘二、答題方式答題方式為閉卷、筆試三、試卷內容結構微積分 56%線性代數 22%概率論與數理統(tǒng)計 22%四、試卷題型結構試卷題型結構為:單項選擇題選題 8小題,每題4分,共32分填空題 6小題,每題4分,共24分解答題(包括證明題) 9小題,共94分微 積 分一、函數、極限、連續(xù)考試內容13函數的概念及表示法函數的有界性、單調性、周期性和奇偶性復合函數、反函數、分段函數和隱函數基本初等函數的性質及其圖形初等函數函數關系的建立數列極限與函數極限的定義及其性質函數的左極限和右極限無窮小量和無窮大量的概念及其關系無窮小量的性質及無窮小量的比較極限的四則運算極限存在的兩個準則:單調有界準則和夾逼準則兩個重要極限: 函數連續(xù)的概念函數間斷點的類型初等函數的連續(xù)性閉區(qū)間上連續(xù)函數的性考試要求1理解函數的概念,掌握函數的表示法,會建立應用問題的函數關系2了解函數的有界性單調性周期性和奇偶性3理解復合函數及分段函數的概念,了解反函數及隱函數的概念4掌握基本初等函數的性質及其圖形,了解初等函數的概念5了解數列極限和函數極限(包括左極限與右極限)的概念6了解極限的性質與極限存在的兩個準則,掌握極限的四則運算法則,掌握利用兩個重要極限求極限的方法7理解無窮小的概念和基本性質掌握無窮小量的比較方法了解無窮大量的概念及其與無窮小量的關系8理解函數連續(xù)性的概念(含左連續(xù)與右連續(xù)),會判別函數間斷點的類型9了解連續(xù)函數的性質和初等函數的連續(xù)性,理解閉區(qū)間上連續(xù)函數的性質(有界性、最大值和最小值定理介值定理),并會應用這些性質二、一元函數微分學考試內容導數和微分的概念導數的幾何意義和經濟意義函數的可導性與連續(xù)性之間的關系平面曲線的切線與法線導數和微分的四則運算基本初等函數的導數復合函數、反函數和隱函數的微分法高階導數一階微分形式的不變性微分中值定理洛必達(LHospital)法則函數單調性的判別函數的極值函數圖形的凹凸性、拐點及漸近線函數圖形的描繪函數的最大值與最小值考試要求1理解導數的概念及可導性與連續(xù)性之間的關系,了解導數的幾何意義與經濟意義(含邊際與彈性的概念),會求平面曲線的切線方程和法線方程2掌握基本初等函數的導數公式導數的四則運算法則及復合函數的求導法則,會求分段函數的導數 會求反函數與隱函數的導數3了解高階導數的概念,會求簡單函數的高階導數4了解微分的概念,導數與微分之間的關系以及一階微分形式的不變性,會求函數的微分5理解羅爾(Rolle)定理拉格朗日( Lagrange)中值定理了解泰勒定理柯西(Cauchy)中值定理,掌握這四個定理的簡單應用6會用洛必達法則求極限7掌握函數單調性的判別方法,了解函數極值的概念,掌握函數極值、最大值和最小值的求法及其應用8會用導數判斷函數圖形的凹凸性(注:在區(qū)間內,設函數具有二階導數當時,的圖形是凹的;當時,的圖形是凸的),會求函數圖形的拐點和漸近線9會描述簡單函數的圖形三、一元函數積分學考試內容原函數和不定積分的概念不定積分的基本性質基本積分公式定積分的概念和基本性質定積分中值定理積分上限的函數及其導數牛頓一萊布尼茨(Newton- Leibniz)公式不定積分和定積分的換元積分法與分部積分法反常(廣義)積分定積分的應用考試要求1理解原函數與不定積分的概念,掌握不定積分的基本性質和基本積分公式,掌握不定積分的換元積分法和分部積分法2了解定積分的概念和基本性質,了解定積分中值定理,理解積分上限的函數并會求它的導數,掌握牛頓一萊布尼茨公式以及定積分的換元積分法和分部積分法3會利用定積分計算平面圖形的面積旋轉體的體積和函數的平均值,會利用定積分求解簡單的經濟應用問題4了解反常積分的概念,會計算反常積分四、多元函數微積分學考試內容多元函數的概念二元函數的幾何意義二元函數的極限與連續(xù)的概念有界閉區(qū)域上二元連續(xù)函數的性質多元函數偏導數的概念與計算多元復合函數的求導法與隱函數求導法二階偏導數全微分多元函數的極值和條件極值、最大值和最小值二重積分的概念、基本性質和計算無界區(qū)域上簡單的反常二重積分考試要求1了解多元函數的概念,了解二元函數的幾何意義2了解二元函數的極限與連續(xù)的概念,了解有界閉區(qū)域上二元連續(xù)函數的性質3了解多元函數偏導數與全微分的概念,會求多元復合函數一階、二階偏導數,會求全微分,會求多元隱函數的偏導數4了解多元函數極值和條件極值的概念,掌握多元函數極值存在的必要條件,了解二元函數極值存在的充分條件,會求二元函數的極值,會用拉格朗日乘數法求條件極值,會求簡單多元函數的最大值和最小值,并會解決簡單的應用問題5了解二重積分的概念與基本性質,掌握二重積分的計算方法(直角坐標極坐標)了解無界區(qū)域上較簡單的反常二重積分并會計算五、無窮級數考試內容常數項級數收斂與發(fā)散的概念收斂級數的和的概念級數的基本性質與收斂的必要條件幾何級數與級數及其收斂性正項級數收斂性的判別法任意項級數的絕對收斂與條件收斂交錯級數與萊布尼茨定理冪級數及其收斂半徑、收斂區(qū)間(指開區(qū)間)和收斂域冪級數的和函數冪級數在其收斂區(qū)間內的基本性質簡單冪級數的和函數的求法初等函數的冪級數展開式考試要求1了解級數的收斂與發(fā)散收斂級數的和的概念2了解級數的基本性質和級數收斂的必要條件,掌握幾何級數及級數的收斂與發(fā)散的條件,掌握正項級數收斂性的比較判別法和比值判別法3了解任意項級數絕對收斂與條件收斂的概念以及絕對收斂與收斂的關系,了解交錯級數的萊布尼茨判別法4會求冪級數的收斂半徑、收斂區(qū)間及收斂域5了解冪級數在其收斂區(qū)間內的基本性質(和函數的連續(xù)性、逐項求導和逐項積分),會求簡單冪級數在其收斂區(qū)間內的和函數6了解及的麥克勞林(Maclaurin)展開式六、常微分方程與差分方程考試內容常微分方程的基本概念變量可分離的微分方程齊次微分方程一階線性微分方程線性微分方程解的性質及解的結構定理二階常系數齊次線性微分方程及簡單的非齊次線性微分方程差分與差分方程的概念差分方程的通解與特解一階常系數線性差分方程微分方程的簡單應用考試要求1了解微分方程及其階、解、通解、初始條件和特解等概念2掌握變量可分離的微分方程齊次微分方程和一階線性微分方程的求解方法3會解二階常系數齊次線性微分方程4了解線性微分方程解的性質及解的結構定理,會解自由項為多項式指數函數正弦函數余弦函數的二階常系數非齊次線性微分方程5了解差分與差分方程及其通解與特解等概念6了解一階常系數線性差分方程的求解方法7會用微分方程求解簡單的經濟應用問題線 性 代 數一、行列式考試內容行列式的概念和基本性質行列式按行(列)展開定理考試要求1.了解行列式的概念,掌握行列式的性質2.會應用行列式的性質和行列式按行(列)展開定理計算行列式二、矩陣考試內容矩陣的概念矩陣的線性運算矩陣的乘法方陣的冪方陣乘積的行列式矩陣的轉置逆矩陣的概念和性質矩陣可逆的充分必要條件伴隨矩陣矩陣的初等變換初等矩陣矩陣的秩矩陣的等價分塊矩陣及其運算考試要求1理解矩陣的概念,了解單位矩陣、數量矩陣、對角矩陣、三角矩陣的定義及性質,了解對稱矩陣、反對稱矩陣及正交矩陣等的定義和性質2掌握矩陣的線性運算、乘法、轉置以及它們的運算規(guī)律,了解方陣的冪與方陣乘積的行列式的性質3.理解逆矩陣的概念,掌握逆矩陣的性質以及矩陣可逆的充分必要條件,理解伴隨矩陣的概念,會用伴隨矩陣求逆矩陣.4.了解矩陣的初等變換和初等矩陣及矩陣等價的概念,理解矩陣的秩的概念,掌握用初等變換求矩陣的逆矩陣和秩的方法5.了解分塊矩陣的概念,掌握分塊矩陣的運算法則三、向量考試內容向量的概念向量的線性組合與線性表示向量組的線性相關與線性無關向量組的極大線性無關組等價向量組向量組的秩向量組的秩與矩陣的秩之間的關系向量的內積線性無關向量組的正交規(guī)范化方法考試要求1了解向量的概念,掌握向量的加法和數乘運算法則2理解向量的線性組合與線性表示、向量組線性相關、線性無關等概念,掌握向量組線性相關、線性無關的有關性質及判別法3理解向量組的極大線性無關組的概念,會求向量組的極大線性無關組及秩4理解向量組等價的概念,理解矩陣的秩與其行(列)向量組的秩之間的關系5了解內積的概念掌握線性無關向量組正交規(guī)范化的施密特(Schmidt)方法四、線性方程組考試內容 線性方程組的克萊姆(Cramer)法則線性方程組有解和無解的判定齊次線性方程組的基礎解系和通解非齊次線性方程組的解與相應的齊次線件方程組(導出組)的解之間的關系非齊次線性方程組的通解考試要求1.會用克萊姆法則解線性方程組2.掌握非齊次線性方程組有解和無解的判定方法3.理解齊次線性方程組的基礎解系的概念,掌握齊次線性方程組的基礎解系和通解的求法4.理解非齊次線性方程組解的結構及通解的概念5.掌握用初等行變換求解線性方程組的方法五、矩陣的特征值和特征向量考試內容矩陣的特征值和特征向量的概念、性質相似矩陣的概念及性質矩陣可相似對角化的充分必要條件及相似對角矩陣實對稱矩陣的特征值和特征向量及相似對角矩陣考試要求1.理解矩陣的特征值、特征向量的概念,掌握矩陣特征值的性質,掌握求矩陣特征值和特征向量的方法2.理解矩陣相似的概念,掌握相似矩陣的性質,了解矩陣可相似對角化的充分必要條件,掌握將矩陣化為相似對角矩陣的方法3.掌握實對稱矩陣的特征值和特征向量的性質六、二次型考試內容二次型及其矩陣表示合同變換與合同矩陣二次型的秩慣性定理二次型的標準形和規(guī)范形用正交變換和配方法化二次型為標準形二次型及其矩陣的正定性考試要求1.了解二次型的概念,會用矩陣形式表示二次型,了解合同變換與合同矩陣的概念2.了解二次型的秩的概念,了解二次型的標準形、規(guī)范形等概念,了解慣性定理,會用正交變換和配方法化二次型為標準形3.理解正定二次型、正定矩陣的概念,并掌握其判別法概率論與數理統(tǒng)計一、隨機事件和概率考試內容隨機事件與樣本空間事件的關系與運算完備事件組概率的概念概率的基本性質古典型概率幾何型概率條件概率概率的基本公式事件的獨立性獨立重復試驗考試要求1了解樣本空間(基本事件空間)的概念,理解隨機事件的概念,掌握事件的關系及運算2理解概率、條件概率的概念,掌握概率的基本性質,會計算古典型概率和幾何型概率,掌握概率的加法公式、減法公式、乘法公式、全概率公式以及貝葉斯(Bayes)公式等3理解事件的獨立性的概念,掌握用事件獨立性進行概率計算;理解獨立重復試驗的概念,掌握計算有關事件概率的方法二、隨機變量及其分布考試內容隨機變量隨機變量的分布函數的概念及其性質離散型隨機變量的概率分布連續(xù)型隨機變量的概率密度常見隨機變量的分布隨機變量函數的分布考試要求1理解隨機變量的概念,理解分布函數的概念及性質,會計算與隨機變量相聯(lián)系的事件的概率2理解離散型隨機變量及其概率分布的概念,掌握01分布、二項分布、幾何分布、超幾何分布、泊松(Poisson)分布及其應用3掌握泊松定理的結論和應用條件,會用泊松分布近似表示二項分布4理解連續(xù)型隨機變量及其概率密度的概念,掌握均勻分布、正態(tài)分布、指數分布及其應用,其中參數為的指數分布的概率密度為 5會求隨機變量函數的分布三、多維隨機變量及其分布考試內容多維隨機變量及其分布函數二維離散型隨機變量的概率分布、邊緣分布和條件分布二維連續(xù)型隨機變量的概率密度、邊緣概率密度和條件密度隨機變量的獨立性和不相關性常見二維隨機變量的分布兩個及兩個以上隨機變量的函數的分布考試要求1理解多維隨機變量的分布函數的概念和基本性質2理解二維離散型隨機變量的概率分布和二維連續(xù)型隨機變量的概率密度、掌握二維隨機變量的邊緣分布和條件分布3理解隨機變量的獨立性和不相關性的概念,掌握隨機變量相互獨立的條件,理解隨機變量的不相關性與獨立性的關系4掌握二維均勻分布和二維正態(tài)分布,理解其中參數的概率意義5會根據兩個隨機變量的聯(lián)合分布求其函數的分布,會根據多個相互獨立隨機變量的聯(lián)合分布求其函數的分布四、隨機變量的數字特征考試內容隨機變量的數學期望(均值)、方差、標準差及其性質隨機變量函數的數學期望切比雪夫(Chebyshev)不等式矩、協(xié)方差、相關系數及其性質考試要求1理解隨機變量數字特征(數學期望、方差、標準差、矩、協(xié)方差、相關系數)的概念,會運用數字特征的基本性質,并掌握常用分布的數字特征2會求隨機變量函數的數學期望3了解切比雪夫不等式五、大數定律和中心極限定理考試內容切比雪夫大數定律伯努利(Bernoulli)大數定律辛欽(Khinchine)大數定律棣莫弗拉普拉斯(De MoivreLaplace)定理列維林德伯格(LevyLindberg)定理考試要求1了解切比雪夫大數定律、伯努利大數定律和辛欽大數定律(獨立同分布隨機變量序列的大數定律)2了解棣莫弗拉普拉斯中心極限定理(二項分布以正態(tài)分布為極限分布)、列維林德伯格中心極限定理(獨立同分布隨機變量序列的中心極限定理),并會用相關定理近似計算有關隨機事件的概率六、數理

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
  • 6. 下載文件中如有侵權或不適當內容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論