



免費(fèi)預(yù)覽已結(jié)束,剩余1頁可下載查看
下載本文檔
版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡(jiǎn)介
高三空間向量與立體幾何知識(shí)點(diǎn)歸納總結(jié)一知識(shí)要點(diǎn)。1. 空間向量的概念:在空間,我們把具有大小和方向的量叫做向量。注:(1)向量一般用有向線段表示同向等長的有向線段表示同一或相等的向量。(2)向量具有平移不變性2. 空間向量的運(yùn)算。定義:與平面向量運(yùn)算一樣,空間向量的加法、減法與數(shù)乘運(yùn)算如下(如圖)。 ;運(yùn)算律:加法交換律:加法結(jié)合律:數(shù)乘分配律:運(yùn)算法則:三角形法則、平行四邊形法則、平行六面體法則3. 共線向量。(1)如果表示空間向量的有向線段所在的直線平行或重合,那么這些向量也叫做共線向量或平行向量,平行于,記作。(2)共線向量定理:空間任意兩個(gè)向量、(),/存在實(shí)數(shù),使。(3)三點(diǎn)共線:A、B、C三點(diǎn)共線(4)與共線的單位向量為4. 共面向量 (1)定義:一般地,能平移到同一平面內(nèi)的向量叫做共面向量。說明:空間任意的兩向量都是共面的。(2)共面向量定理:如果兩個(gè)向量不共線,與向量共面的條件是存在實(shí)數(shù)使。(3)四點(diǎn)共面:若A、B、C、P四點(diǎn)共面 5. 空間向量基本定理:如果三個(gè)向量不共面,那么對(duì)空間任一向量,存在一個(gè)唯一的有序?qū)崝?shù)組,使。若三向量不共面,我們把叫做空間的一個(gè)基底,叫做基向量,空間任意三個(gè)不共面的向量都可以構(gòu)成空間的一個(gè)基底。推論:設(shè)是不共面的四點(diǎn),則對(duì)空間任一點(diǎn),都存在唯一的三個(gè)有序?qū)崝?shù),使。6. 空間向量的直角坐標(biāo)系: (1)空間直角坐標(biāo)系中的坐標(biāo):在空間直角坐標(biāo)系中,對(duì)空間任一點(diǎn),存在唯一的有序?qū)崝?shù)組,使,有序?qū)崝?shù)組叫作向量在空間直角坐標(biāo)系中的坐標(biāo),記作,叫橫坐標(biāo),叫縱坐標(biāo),叫豎坐標(biāo)。注:點(diǎn)A(x,y,z)關(guān)于x軸的的對(duì)稱點(diǎn)為(x,-y,-z),關(guān)于xoy平面的對(duì)稱點(diǎn)為(x,y,-z).即點(diǎn)關(guān)于什么軸/平面對(duì)稱,什么坐標(biāo)不變,其余的分坐標(biāo)均相反。在y軸上的點(diǎn)設(shè)為(0,y,0),在平面yOz中的點(diǎn)設(shè)為(0,y,z)(2)若空間的一個(gè)基底的三個(gè)基向量互相垂直,且長為,這個(gè)基底叫單位正交基底,用表示。空間中任一向量=(x,y,z)(3)空間向量的直角坐標(biāo)運(yùn)算律:若,則 , , 。若,則。一個(gè)向量在直角坐標(biāo)系中的坐標(biāo)等于表示這個(gè)向量的有向線段的終點(diǎn)的坐標(biāo)減去起點(diǎn)的坐標(biāo)。中點(diǎn)公式:若,當(dāng)P為AB中點(diǎn)時(shí),三角形重心P坐標(biāo)為ABC的五心:內(nèi)心P:內(nèi)切圓的圓心,角平分線的交點(diǎn)。(單位向量)外心P:外接圓的圓心,中垂線的交點(diǎn)。垂心P:高的交點(diǎn):(移項(xiàng),內(nèi)積為0,則垂直)重心P:中線的交點(diǎn),三等分點(diǎn)(中位線比)中心:正三角形的所有心的合一。(4)模長公式:若,則,(5)夾角公式:。ABC中A為銳角A為鈍角,鈍角(6)兩點(diǎn)間的距離公式:若,則,或 7. 空間向量的數(shù)量積。(1)空間向量的夾角及其表示:已知兩非零向量,在空間任取一點(diǎn),作,則叫做向量與的夾角,記作;且規(guī)定,顯然有;若,則稱與互相垂直,記作:。(2)向量的模:設(shè),則有向線段的長度叫做向量的長度或模,記作:。(3)向量的數(shù)量積:已知向量,則叫做的數(shù)量積,記作,即。(4)空間向量數(shù)量積的性質(zhì):不滿足乘法結(jié)合率:二空間向量與立體幾何1線線平行兩線的方向向量平行1-1線面平行線的方向向量與面的法向量垂直1-2面面平行兩面的法向量平行2線線垂直(共面與異面)兩線的方向向量垂直2-1線面垂直線與面的法向量平行2-2面面垂直兩面的法向量垂直3線線夾角(共面與異面)兩線的方向向量的夾角或夾角的補(bǔ)角,3-1線面夾角:求線面夾角的步驟:先求線的方向向量與面的法向量的夾角,若為銳角角即可,若為鈍角,則取其補(bǔ)角;再求其余角,即是線面的夾角.3-2面面夾角(二面角):若兩面的法向量一進(jìn)一出,則二面角等于兩法向量的夾角;法向量同進(jìn)同出,則二面角等于法向量的夾角的補(bǔ)角. 4點(diǎn)面距
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 2025年高壓電工技師考試題庫:高壓絕緣技術(shù)現(xiàn)場(chǎng)施工合同管理策略解析試題
- 2025年特產(chǎn)食品項(xiàng)目立項(xiàng)申請(qǐng)報(bào)告
- 2025年裝卸機(jī)械項(xiàng)目規(guī)劃申請(qǐng)報(bào)告
- 農(nóng)村生物技術(shù)農(nóng)業(yè)種植服務(wù)協(xié)議
- 2025年輔導(dǎo)員招聘考試題庫:教育心理學(xué)科研究方法應(yīng)用前景研究分析探討試題
- 2025年福建泉州市事業(yè)單位招聘考試衛(wèi)生類中醫(yī)學(xué)專業(yè)知識(shí)試卷
- 2025年智能燃?xì)獗眄?xiàng)目申請(qǐng)報(bào)告
- 網(wǎng)絡(luò)游戲?qū)η嗌倌甑挠绊懽h論文11篇范文
- 2025年電梯安裝維修人員考試試卷:電梯機(jī)械部件故障分析與排除案例分析試題
- 2025年電子商務(wù)數(shù)據(jù)可視化與分析測(cè)試試卷
- 大學(xué)生醫(yī)學(xué)健康科普演講
- 2025國開電大《管理英語1》綜合測(cè)試形考任務(wù)答案
- 冶金天車作業(yè)安全培訓(xùn)
- 廣東省深圳市2021-2022學(xué)年高一下學(xué)期英語期末調(diào)研考試(含答案)
- 《馬克思主義基本原理概論》課后思考題及答案
- 公益崗考試試題及答案
- 2025屆成都市新都一中高三一診考試英語試卷含答案
- 煤炭行業(yè)的企業(yè)戰(zhàn)略布局與資源整合考核試卷
- 電動(dòng)二輪車租賃合同協(xié)議
- 電梯維保合同分包協(xié)議
- 靜脈血液標(biāo)本采集指南
評(píng)論
0/150
提交評(píng)論