




已閱讀5頁,還剩3頁未讀, 繼續(xù)免費(fèi)閱讀
版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡(jiǎn)介
CHINESEJOURNALOFMECHANICALENGINEERINGVol.22,aNo.4,a2009594DOI:10.3901/CJME.2009.04.594,;ReliabilitySimulationandDesignOptimizationforMechanicalMaintenanceLIUDeshun*,HUANGLiangpei,YUEWenhui,andXUXiaoyanHunanProvincialKeyLaboratoryofHealthMaintenanceforMechanicalEquipmentHunanUniversityofScienceandTechnology,Xiangtan411201,ChinaReceivedSeptember8,2008;revisedApril16,2009;acceptedApril30,2009;publishedelectronicallyMay5,2009Abstract:Reliabilitymodelofamechanicalproductsystemwillbenewlyreconstructedandmaintenancecostwillincreasebecausefailedpartscanbereplacedwithnewcomponentsduringservice,whichshouldbeaccountedforinsystemdesign.Inthispaper,areliabilitymodelandreliability-baseddesignoptimizationmethodologyformaintenancearepresented.First,basedonthetime-to-failuredensityfunctionofthepartofthesystem,theagedistributionsofallpartsofthesystemduringserviceareinvestigated,areliabilitymodelofthemechanicalsystemformaintenanceisdeveloped.Then,reliabilitysimulationsofthesystemswithWeibullprobabilitydensityfunctionsareperformed,thesystemminimumreliabilityandsteadyreliabilityformaintenancearedefinedbasedonreliabilitysimulationduringthelifecycleofthesystem.Thirdly,amaintenancecostmodelisdevelopedbasedonreplacementratesoftheparts,areliability-baseddesignoptimizationmodelformaintenanceispresented,inwhichtotallifecyclecostisconsideredasdesignobjectiveandsystemreliabilityasdesignconstrain.Finally,thereliability-baseddesignoptimizationmethodologyformaintenanceisusedtodesignofalinkringforthechainconveyor,whichshowsthatoptimaldesignwiththelowestmaintenancecostcanbeobtained,andminimumreliabilityandsteadyreliabilityofthesystemcansatisfyrequirementofsystemreliabilityduringserviceofthechainconveyor.Keywords:maintenance,reliability,simulation,designoptimization1IntroductionDuringthelifecycleofamechanicalproduct,maintenance,whichisimplementedonthejudgmentofpracticalstates,preservationandreconstructionofsomecertainstatesfortheproduct,isveryimportanttokeeptheproductavailableandprolongitslife.Studiesonmaintenanceformechanicalproductsareroughlyclassifiedintothefollowingthreecatalogs.(1)Howtoformulatemaintenancepolicyor(and)howtooptimizemaintenanceperiodsconsideringsystemreliabilityandmaintenancecost,e.g.,whensystemreliabilityissubjectedtosomecertainconditions,maintenancepolicyandoptimalmaintenanceintervalaredeterminedtomakemaintenancecostlowest14.(2)Todevelopmaintenancemethodsandtoolstoensuresystemmaintenancetobothlowcostandshortrepairtime,suchasspecialmaintenancetoolboxesdeveloped59.(3)Todesignformaintenance(DFM),namelyduringdesignprocedure,systemmaintainabilityisevaluatedand*Correspondingauthor.E-mail:ThisprojectissupportedbyNationalBasicResearchProgramofChina(973Program,GrantNo.2003CB317001),ScientificResearchFundofHunanProvincialEducationDepartmentofChina(GrantNo.07A018),HunanProvincialNaturalScienceFoundationofChina(GrantNo.07JJ5074),andNationalNaturalScienceFoundationofChina(GrantNo.50875082)isimproved1014.Maintenancestartsatdesign.Obviously,designmethodologyformaintenance,whichisoneofbesteffectivemaintenancemeansinthelife-cycleofaproduct,attractsmanyresearchersinterests.However,researchondesignformaintenanceismainlycentralizedontwofields.Oneismaintainabilityevaluationonproductdesignalternatives,theotherissomepeculiarstructuresofpartsdesignedforconvenientmaintenance.Forexample,computer-aidedmaintainabilityevaluationtoolsforproductdesign11,productassemblyanddisassemblysimulationprogramsformaintenance12,airplanedesignformaintenance13,andsoon.Butstudiesondesignmethodologiesconsideringproductreliability,maintenancecostandmaintenancepolicyareseldomreported.SHUandFLOWERoncepointedoutthatreckoninginlaborcostandproductionintervalcost,designdecisionofalternativesofthepartwouldbeinfluenced.However,subsequentresearchreportshavenotbeenpresented15.Inthispaper,basedonthetime-to-failuredensityfunctionofthepart,distributionsofserviceageofpartsforamechanicalsystemthatundergoesmaintenanceareinvestigated.Thenthereliabilitymodelofthemechanicalsystemisreconstructedandsimulated.Finally,anoveldesignoptimizationmethodologyformaintenanceisdevelopedandillustratedbymeansofdesignofalinkringforthechainconveyor.CHINESEJOURNALOFMECHANICALENGINEERING5952ReconstructionofReliabilityModelofMechanicalSystemforMaintenance2.1ModelassumptionsAfteramechanicalsystemrunssometime,duetoreplacementoffailparts,primaryreliabilitymodelisinapplicabletochangedsystem,thusthereliabilitymodelshouldbereconstructed.Themechanicalsystemdiscussedinthispaperhasfollowingcharacteristics.(1)Systemconsistsofalargenumberofsametypeparts,inwhichthenumberofpartsisconstantduringthewholelifecycleofthesystem.(2)Thetime-to-failuredensitydistributionfunctionsofallpartsarethesame,also,replacementpartshavethesamefailuredistributionfunctionsastheoriginalparts(3)Failureofeachpartisarandomindependentevent,i.e.,failureofonepartdoesnotaffectfailureofotherpartsinthesystem.Forexample,achainconveyorwidelyusedinmanyindustriesconsistsofalargenumberofsameroundrings,samelinksheetsandsamescrapeboards.Theirrespectivenumbersareconstantafterthechainconveyorisputintotheservice.Also,eachpart,beingsubjectedtosimilarworkconditionsandsimilarfailurestates,hasthesameoridenticaldensitydistributionoftimetofailure.Moreover,replacementpartshavefailuretimedensityfunctionsameoridenticaltotheoriginalpartsduringtheserviceofthechainconveyor.2.2ReliabilitymodelingformaintenanceReliabilityofamechanicalsystemdependsonitsparts,yetreliabilityandfailureprobabilityofwhichrestontheirserviceages.Herein,accordingtothedensitydistributionfunctionoftimetofailureofthepart,partserviceagedistributionofthemechanicalsystemiscalculated,thenreliabilitymodelofthemechanicalsystemformaintenanceisdeveloped.Duringtheserviceofamechanicalsystem,somepartsthatfailrequiretobereplacedintime,henceagedistributionofpartsofthemechanicalsystemundergoingmaintenancehasbeenchanged.Supposedthatafterthemechanicalsystemrunssometimentn=,whereistimebetweenmaintenanceactivities,i.e.,maintenanceinterval,theunitofcanbehours,days,months,oryears.If()inptrepresentsageproportionofpartsatntwithagei,thusagedistributionofpartsattimentdenotesmatrix01(),(),nnptpt(),inpt()nnpt.Thefailuredensityfunctionofpartsandcurrentagedistributionofpartsinthesystemdetermineagedistributionatnexttime,ortheportionofthecontentsofeachbinthatsurvivetothenexttimestep.Anagedistributionobtainedateachtimestepforeachpartpopulationdeterminesfailurerateforthefollowingtimestep.Tofindfailureprobabilityofpartsthefailuredensityfunctionisintegratedfromzerotont.Theportionofthepopulationthatsurvivesadvancestothenextagebox,andtheportionthatfailisreplacedbynewpartstobecomezeroagetoreenterthefirstbox.Initially,allpartsarenewandzeroageinthefirstbox.Thatis,at00t=,theportioninthefirstboxis00()1pt=.(1)At1t=,agefractionsofthefirstboxandthesecondboxarerepresentedas1100001000()()1()d,()()()d.ptptfxxptptfxx=(2)Portionsofbothageboxessurviveandadvancetothenextagebox,andportionsoffailedpartsfrombothboxesreplacedbynewpartsappearinthefirstbox.At22t=,theproportionsofthefirstthreeboxesarecalculatedasfollows:22211012010202110100()()1()d,()()1()d,()()()d()()d,ptptfxxptptfxxptptfxxptfxx=+#(3)So,atntn=,portionsofpartsineachboxarecalculatedbyusingthefollowingequations:110(1)1210(2)23103321022110()()1()d,()()1()d,()()1()d,()()1()d,()()1()d,nnnnnnnnnnnnnnnnnnnptptfxxptptfxxptptfxxptptfxxptptfxxp=#10101(1)0100()()1()d,()()()d.nnnininitptfxxptptfxx+=(4)Where0()nptisthefractionofpopulationofpartswithage0atnt,representingpartsthathavejustbeenputintoservice.Itmeansthat0()nptisfailurerateofparts,orreplacementrateoffailedparts.Inotherword,thefractionsofpartsinthefirstboxat01,ntttarenewpartsthatreplacethesefailedparts.AseriessystemconsistsofNpartsthathavethesamefailuredensitydistribution,eachpartisjustaseriesunit,andeachunitisrelativelyindependent.InseriessystemtheYLIUDeshun,etal:ReliabilitySimulationandDesignOptimizationforMechanicalMaintenanceY596failureofanyoneunitresultsinsystemfailure,inaccordingtotheprincipleofprobabilitymultiplication,thereliabilityofseriessystemsbecomes()00()1()d.inptNniniRtfxx=(5)Sincethenumberofpartsthatcomprisethesystemisconstant,here,thesystemreliabilityofthemechanicalsystemformaintenanceisdefinedas()00()()1()dinNnnptNniNiRtRtfxx=()001()d.inptniifxx=(6)Fromabovetosee,aslongasthetime-to-failuredensityfunctionandmaintenanceintervalaregiven,serviceagedistributionsofpartsandsystemreliabilitycouldbeobtainedbysimulation.3ReplacementRateandReliabilitySimulationforMaintenance3.1WeibulldistributionoftimetofailureTheWeibullprobabilitydensityfunctioniswidelyusedinfailuremodelinginmechanicalpartsandelectroniccomponents.HeretheWeibulldistributionwithtwoparametersisusedtosimulatereliabilityofthesystemthatisundergoingmaintenance,thatis,thetime-to-failuredensityfunctionofsystemsconstitutedpartsis1()exp,0xxfxx=.(7)InEq.(7),istheshapeparameter,isthescaleparameter.xistime,whoseunitecanbehours,days,oryears.FivefailuredensityfunctionswiththeirWeibullparameters10,1,2,3,4,5=aredescribedinFig.1.Itisshownthatislarge,beforeserviceageofpartsarrivesattheexpectedvalue,failureprobabilityofpartsisextremelylow.Whereas,issmall,manypartsfailsinshorttimeofservice.3.2ReliabilitysimulationDifferentmaintenanceintervalofthemechanicalsystemanddifferenttime-to-failuredensityfunctionofitspartsareselectedtosimulatereliabilityofthesystemshownasFig.2Fig.4.Fig.2showshowsimulationtimestep(maintenanceinterval)affectssystemreliability,theplotsshowncorrespondtomaintenanceinterval0.5,1,2=,andwithWeibulldistributionparameters4,10=.Fig.3plotstheinfluenceofthescaleparameterofWeibulldistributiononsystemreliability,andfourcurvesrepresentfourdifferenttypepartscorrespondingtoaconstantvalueofequalto4pairedwithvalueof8,10,12,15respectively.Fig.4revealshowtheshapeparameterofWeibulldistributionaffectssystemreliability,andWeibulldistributionparametersoffivecurvesare10,=1,2,3,4,5=.Correspondingly,theirreplacementratecurvesofsystemspartsforthesetime-to-failuredensitydistributionfunctionsareplottedinFig.5.Additionally,inFig.3Fig.5,maintenanceintervalis1=.Fig.1.WeibullprobabilitydistributionsFig.2.SystemreliabilityR(t)withFig.3.SystemreliabilityR(t)withSeveralcharacteristicsofthesefiguresareofinterest.First,thereliabilityandreplacementrateeventuallyreachessteadystate.ThisagreeswithDrenicksTheorem,whichCHINESEJOURNALOFMECHANICALENGINEERING597statesthesuperpositionofaninfinitenumberofindependentFig.4.SystemreliabilityR(t)withFig.5.Partreplacementratep0(t)equilibriumrenewalprocessishomogeneousPoissonprocess.Duringtheinitialstageofsystemservice,partsofthesystemare“new”,then,become“old”.Theportionofpartsthatfailgraduallyincreases,thusthepartreplacementrateincreasesandsystemreliabilitywilldropmonotonically.Withthereplacementofasignificantportionofthepopulation,portionofpartsthatfailwilldecrease,thusthepartreplacementratewilldropandthesystemreliabilitywillriseuntilthisoscillationisoverandnextoscillationbegins.Aftersomeoscillations,thepopulationbecomesmoreage-diversifiedwitheachoscillation,andtheagedistributionapproachessteady.Atthattime,theoscillationsinreplacementrateandsystemreliabilitydiminish.ComparedFig.4withFig.5,itisshownthatthetrendofreplacementrateiscontrarytothechangeofsystemreliability.Whensystemreliabilityincreases,partreplacementratereduces.Otherwise,assystemreliabilityreduces,partreplacementrateincreases.Secondly,thesteadystatevalueandthedegreeofoscillationofthesystemreliabilitydependonmaintenanceinterval.AsFig.2shows,thereliabilityrisesasmaintenanceintervaldecreasessincepartsthatfailarebeingreplacedmorequickly.Theshorterthemaintenanceintervalis,thehigherreliabilityis,andthesmalleroscillationsare.However,frequentrepairswillresultinhighermaintenancecost.Thirdly,thesteadystatevalueofthesystemreliabilitydependsontheparametersofWeibulldistribution.Thedependenceonisnotsurprising,highervaluesofforagivensetofyieldhighervaluesforexpecttimetofailureandthuslowerreplacementrateandhigherreliability.Moreinterestingly,withtheincreaseofthevalueof,thesteadyvaluesofreplacementratedecreaseandthesteadyvaluesofreliabilityincrease.Fourth,thedegreeofoscillationofsystemreliabilitydependsontheparametersofWeibulldistribution.Althoughtheinfluenceofonoscillationscanbeneglected,theinfluenceofonoscillationsshouldbepaidspecialattentionto.Biggervalueofdenotesthatfailurerateofpartsislowerbeforeserv
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 文庫發(fā)布:護(hù)理
- 班會(huì)課件十分鐘教學(xué)反思
- 收納兒童課件圖片
- 關(guān)于火災(zāi)教學(xué)課件
- 2025年自然資源部人力資源開發(fā)中心招聘應(yīng)屆畢業(yè)生2人筆試歷年典型考題及考點(diǎn)剖析附帶答案詳解
- 時(shí)裝比賽活動(dòng)方案
- 旺旺促銷活動(dòng)方案
- 春季企業(yè)活動(dòng)策劃方案
- 【石家莊】河北石家莊市無極縣從2025年“三支一扶”志愿者中招聘事業(yè)單位工作人員2人筆試歷年典型考題及考點(diǎn)剖析附帶答案詳解
- 新年公司開工策劃方案
- 民眾生活中的民俗學(xué)智慧樹知到期末考試答案章節(jié)答案2024年湖南師范大學(xué)
- 麻醉中的呼氣末正壓調(diào)節(jié)技巧
- 組織學(xué)與胚胎學(xué)(南方醫(yī)科大學(xué))智慧樹知到期末考試答案章節(jié)答案2024年南方醫(yī)科大學(xué)
- 2024年03月廣東省韶關(guān)市法院2024年招考31名勞動(dòng)合同制審判輔助人員筆試歷年(2016-2023年)真題薈萃帶答案解析
- 師承指導(dǎo)老師臨床經(jīng)驗(yàn)總結(jié)
- 拋光簡(jiǎn)介介紹
- 《客戶維護(hù)技巧》課件
- 急診科的質(zhì)量管理與持續(xù)改進(jìn)
- 小升初數(shù)學(xué)銜接講座
- 二型呼吸衰竭病人護(hù)理查房課件
- 腫瘤康復(fù)項(xiàng)目創(chuàng)業(yè)計(jì)劃書
評(píng)論
0/150
提交評(píng)論