




已閱讀5頁(yè),還剩2頁(yè)未讀, 繼續(xù)免費(fèi)閱讀
版權(quán)說(shuō)明:本文檔由用戶(hù)提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡(jiǎn)介
AbstractPressurewavevelocityinahydraulicsystemwasdeterminedusingpiezopressuresensorswithoutremovingfluidfromthesystem.Themeasurementswerecarriedoutinalowpressurerange(0.26bar)andtheresultswerecomparedwiththeresultsofotherstudies.Thismethodisnotasaccurateasmeasurementwithseparatemeasurementequipment,butthefluidisintheactualmachinethewholetimeandtheeffectofairistakenintoconsiderationifairispresentinthesystem.Theamountofairisestimatedbycalculationsandcomparisonsbetweenotherstudies.Thismeasurementequipmentcanalsobeinstalledinanexistingmachineanditcanbeprogrammedsothatitmeasuresinrealtime.Thus,itcouldbeusede.g.tocontroldampers.KeywordsBulkmodulus,pressurewave,soundvelocity.I.INTRODUCTIONRESSUREwavevelocity(soundvelocity)isanimportantfactorwhenhydraulicsystemsareanalyzedanddevised.Itisaparameterinmanyequationsthatmodelthedynamicsofhydraulicsystemsanditisalsoanimportantparameterwhendampersofhydraulicsystemsaredimensioned.Withthehelpofpressurewavevelocitythebulkmodulusofahydraulicsystemcanbedefined,orviceversa.Differentmeansformeasuringpressurewavevelocityarepresentedinmanystudies.Normallythesemeasurementsarecarriedoutinseparatemeasurementequipment,sothatthemeasuredfluidisremovedfromtheoriginalmachine.Thisaffectscertaincharacteristicsofthefluid,suchastheamountofairormoistureconcentration,andtheresultsofpressurewavevelocitymeasurementsmaydifferfromtheoriginalsituation.Separatewavevelocitymeasurementinstrumentationisveryoftendesignedinsuchawaythatatleastentrainedaircanberemovedfromthemeasuredfluid.Thus,theresultsofmeasurementdonottaketheeffectofairintoconsideration,oronlydissolvedairisnoticed.Thisdoesnotcorrespondtorealsystems,becauseairispresentinfluids,especiallyatlowpressures.Separatepressurewavemeasurementequipmentusuallycannotbeconnectedtothemachine,soreal-timemeasurementofwavevelocityisimpossible.Inmanyearlierstudiespressurewavevelocityhasbeenmeasuredwithultrasonictransducers.Theultrasoundtechniquemaybebasedon,e.g.time-of-flightorpulse-echoprinciples.Thismethodisveryaccurate;anaccuracyofeven0.005m/scanbeachieved,1althoughlargererrorshavealsobeenpresentedintheliterature2-4.Benefitsoftheultrasoundtechniqueare,e.g.long-termstability,precision,sensitivity,capabilityofapplyingtoopticallyopaque,concentratedandelectricallynon-conductingsystemsandthepossibilitytoautomatethemeasurement.However,instrumentationdesignandthesamplestudiedmayaffecttheaccuracyofthemethod.5.Anothermethodfordefiningpressurewavevelocityistomeasurethebulkmodulusofafluidusingamethodbasedondeterminationofthevolumechangeofthesampleundercompressionorexpansion.6-9.Useofthistechniquepreventsunwantedpressuregradientsbetweenthesampleandthesurroundingsystem.Theusefulpressurerangeofthemethodiswide(0.1-350MPa).Theamountofentrainedaircanalsobetakenintoconsideration.Drawbacksofthemethodaretheneedtofirstdeterminethespecificvolumeofthesampleunderatmosphericpressureandtheobviousrequirementofmeasuringthedensityofthesampleunderallthepressuresused.Thus,thismethodcannotbeusedforcontinuousreal-timemeasurements.Calculationofthebulkmodulusandfurthermorethepressurewavevelocity(soundvelocity)isshownin(1)and(2)inchapterII.Someresearchershaveusedpressuretransducerstodetectpressurewavevelocitiesinoils.HarmsandPrinke10presentedamethodbasedonphasedifference.Inthismethodexcitationshouldbeconstant,e.g.pumprippling,becausethesignaliscomparedattwopointsandthevalueofthewavevelocityiscalculatedfromthetimedifferenceofthesesignals10.Choetal.11andYuetal.12measuredthewavepropagationtimeandcalculatedacross-correlationfunctionofthepressuresignals.Methodsbasedonpressuremeasurementsmakereal-timemeasurementspossibleandtheinfluenceofaircanbetakenintoconsideration.YetanothermethodfordeterminingpressurewavevelocitywaspresentedbyApfel13.Thismethodisatechniquethatmeasurestheadiabaticcompressibilityanddensityofafluidwhenthesampleamountsareextremelysmall,4nl-4l.Pressurewavevelocitiescanbecalculatedfromthesedata.Thismethodisapplicable,e.g.forsupercooledorsuperheatedsamples,biologicalorhazardoussamplesorineverycasewhenthebulkpropertiesoffluidshavetobedeterminedfromsmallsampleamounts.Thefluidstudiedisacousticallylevitatedonanimmisciblehostliquidatacertainspotofthetestequipment.Areferencemeasurementofafluidwhosepropertiesarewell-knownismadeattheexactsamespot.Theresultsarerelativelyaccurate(withina2%margincomparedwiththesamevaluesdeterminedbytraditionalmethods).Inordertocalculatepressurewavevelocities,thedensityoftheMeasuringPressureWaveVelocityinaHydraulicSystemLariKela,andPekkaVhojaPWorldAcademyofScience,EngineeringandTechnology492009610samplehastobemeasuredusingdifferentequipment.Obviously,thismethodissuitableforlaboratoryexperimentsonly.13-14.Pressurewavevelocity(soundvelocity)canbeusedtoevaluatevariousimportantcharacteristicpropertiesoffluids.Forinstance,ithasbeenusedtodeterminetheconcentrationofsolventsinoils4,tocalculatethephysicalpropertiesofhydraulicandotherlubricatingfluids,aswellasfueloils7,15-17,toestimatethestructuralandmechanicalpropertiesoffats18andthephysicalpropertiesofpetroleumfractionsandpetroleumreservoirfluids3,5andtodeterminethecompositionofoil-watermixturesandemulsions2ortomeasurethepropertiesofmagnetorheological(MR)fluids19.Themostimportantaimofthisstudywastodevelopamethodformeasuringpressurewavevelocitythatenablesreal-timemeasurements,whicharenecessaryif,e.g.real-timecontrolsystemsforhydraulicsareconstructed.AnotheraimwastocollectdataforfutureresearchwithaHelmholtzresonatorattachedtothissystem.II.THEORETICALASPECTSOFPRESSUREWAVEVELOCITYDETERMINATIONSThebulkmodulusofelasticmaterialBisdefinedasthequotientofpressurevariationandrelativevolumevariationaffectedbypressurevariationB=VdVdP(1)wherePispressureandVisvolume20.Pressurewavesconsideredinthispaperaresimilartowavesthatproduceaudiblesound.Thus,pressurewavesarehandledaslongitudinalvibrationmoleculesmovingbackandforthinthedirectionofpropagationofthewave,producingsuccessivecondensationsandexpansionsinthemedium.Thesealterationsofdensitiesaresimilartothoseproducedbylongitudinalwavesinabar.Asseeninmanystudies,mentionedalsointhispaper,thedifficultyofthemathematicsissidesteppedbyrestrictingthewavesunderconsiderationtoonedimension.21.Itisworthnotingthatatravellingwavedoesnotcarrymaterial,justthewaveanditsenergymove.Choetal.11havepresentedthreedefinitionsforbulkmodulus,whicharewidelyusedinmanytextbooks.Thesedefinitionsareonlyapplicabletotheirownspecificconditions,andinthispaperthesonicbulkmodulus(2)isused,whichhasthesamevalueastheadiabaticbulkmodulus.ThesonicbulkmodulusBisderivedfromthesonicvelocityinthefluidandfluiddensity11,20B=a2(2)whereisdensityandaiswavevelocity(soundvelocity).Equation(2)canbesolvedforthebulkmodulusorwavevelocity,dependingonwhichoneistheknownfactor.Inthispaperdensityisknownandwavevelocityismeasured,sothebulkmoduluscanbecalculated.Butas(2)presents,thesameparametersthataffectthevalueofwavevelocityalsoaffectthebulkmodulusandthisistakenintoconsiderationinthetheoryreview.Themainfactorsthataffectthevalueoftheeffectivebulkmodulusofahydraulicsystemarefluidpressureandtemperature.TheireffectsarepresentedinFig.1.Otherfactorsthataffectthevalueoftheeffectivebulkmodulusare,e.g.theaircontentofthefluid,piperigidityandinterfaceconditionsbetweenthefluidandtheair12.Fig.1Effectoftemperatureandpressureonwavevelocityinanoilsample:335.1K,370.7K,402.1K5Partoftheaircontentdissolvesinamolecularformandtherestofit,entrainedair,existsintheformofsmallbubbles.Dissolvedairhasonlyalittleeffectonthebulkmodulus11,butthevolumetricpercentofentrainedairwithinafluidisoneofthemostinfluentialvariableswhenthebulkmodulusisevaluated.Ithasbeenprovedthatonepercententrainedaircanreducetheeffectivebulkmodulusofafluidbyasmuchas1085MPa,whichcorrespondstoa75percentdecreaseinthefluidmanufacturersvalue22.Itshouldbenotedthatalsoothergases,notonlyair,affectthebulkmodulusandsonicwavevelocity,andthetypeofgashasagreatereffectthandoesthequantityofthegas23.Thelowerthemolecularweightofthegas,thegreatertheeffectonthesonicwavevelocity23.Fluidpressurehasaneffectonthevalueofthebulkmodulus,particularlyinthelowerrangeofpressure.Onereasonfortheeffectofpressureonthebulkmodulusistherelationshipbetweenentrainedaircontentanddissolvedaircontentinafluid.Someentrainedairbecomesdissolvedairwhenpressureincreases.12.Theinfluenceofpressurecanbediscussedatthemolecularlevel,also.Ifthepressureofthefluidunderstudyislow,thefluidmoleculesfitamongeachothereasilyandasignificantamountoffreespaceisstillavailable.Whenthefluidiscompressed,thefreespacedecreasesquicklyatlowerpressures.Whenthepressureofthesystemishigh,thefreespaceisalmostnegligible.Atthispointafurtherdecreaseinvolumeisconnectedwithinteractionsbetweenfluidmoleculesandtheirneighbouringmolecules.24.IfahydraulicsystemspressureismorethanWorldAcademyofScience,EngineeringandTechnology49200961150bar,theeffectoffreeairisonlyminor9.Fluidtemperatureaffectsthedensityoftheaircontent,thesizeofairbubblesinthefluidandthereforetheequivalentcompressibilityofthefluid.Anincrementoftemperaturealsocauseschangesinthemolecularlevelofthefluid.Morevigorouscollisionsbetweenmoleculesareobserved,whichmayeventuallycausechangesinmolecularstructures,andadecreaseintheireffectivevolumeisprobable.24.Therebytemperaturehasanimportantinfluenceonthebulkmodulusandsonicwavevelocity,especiallyindynamicsituations.Theinfluenceoftemperaturehasbeenstudied,e.g.by23.Theirstudiesincludedatemperaturerangebetween-30Cand130C,andtheeffectoftemperatureonsonicwavevelocityseemedtobesignificant23.However,theeffectoffluidtemperaturecanbeignoredifthefluidtemperatureisapproximatelyconstant12,andinmanystudiesthishasbeendone.Inaddition,thebulkmodulusoflubricatingoilsatlowpressurescanbealmostindependentofthetemperature25.Thedensityandbulkmodulusofsolidparts(e.g.pipes)willnotvaryasmuchasthedensityofafluidwhentemperatureandpressurevary10.Thus,theeffectofpiperigidityonthebulkmoduluscanbeignoredifrigidpipesareassumedinahydraulicsystem12.Themoisturecontentofthefluidmayalsoplayaroleifpressurewavevelocitiesaredetermined;itslightlyreducesthevalueofthepressurewavevelocity23.Theviscosityofthefluidalsoaffectsthepressurewavevelocity26,butofcoursetheviscosityofafluiddependsonitsmolecularstructureinthefirstplace,hencetheeffectofviscosityonthepressurewavevelocityvarieswithdifferentfluids.III.TESTEQUIPMENTThetestequipmentandtheprincipleofmeasurementaredepictedinFigs.2and3,respectively.Themeasurementswerecarriedoutbyidentifyingapressurepulseattwopoints,P1andP2,usingpiezosensors.ThedistancebetweenpointsP1andP2(variableLinFig.3)isknownandtwodifferentdistanceswereusedinthetests.Theshorterdistancewas2.75mandthelongerwas4.26m.DistancesL1andL2werealways1.03mand0.11m,respectively.Apressurewavewasexcitedbymeansofapistoninsideapipe.Thisexcitationsystemenablesexcitationofapurepressurewave,becauseunnecessaryelbowsandinterfacesareavoided,sothatreflectionsandtransmissionsofthewaveareminimized.Thepistonwasmovedlightlybutrapidlywithahammer.Asphericalplugvalveandanadjustablevalvewereinstalledinthetestequipmentsothatflowandpressurecouldbecontrolledduringthemeasurements.Thispropertywasusedinthemeasurementssothattwomeasurementserieswerecarriedout.Thefirstonewasdoneunderconstantpressurewithoutflowwiththebothvalvesclosed.Thesecondonewasdonewithflow,sothatflow(andpressure)wascontrolledwiththeadjustablevalve.Theeffectofflowonwavevelocityisinsignificant,asseenlaterinthetext.Themeasurementswerecarriedoutovertwodayssothattemperaturecouldbeassumedtobeconstant.Thetestequipmentdidnotincludeatemperaturesensor,butthetestequipmentwasinsidealaboratorysothatthefluidtemperaturecouldbeassumedtobethesameasthesurroundingtemperature.Thelowestpressureusedwas0.2barandthehighestwas6.1bar,and545measurementswereexecutedbetweentheselimits.ExamplesofthemeasurementresultsaredepictedinFigs.4and5.ThemeasurementsystemincludedoneKyowaPG-20KUpressuresensor(forreferencepressure),twoKuliteHKM-375M-7barVGpressuresensors(forrecognizingapressurewaveattwopoints),aKyowaStrainAmplifierDPM-6H(fortheKyowapressuresensor),aThandar30V-2Aprecisionpowersupply(fortheKulitepressuresensors),aNationalInstrumentsUSB-621116-input(16bit250kS/s)DAQcard,aHPCompaqnx9010laptopcomputerwithMicrosoftWindowsXP,DasyLabv.8.00.004measurementsoftwareandMeasurement&AutomationExplorerv.001.Themeasurementfrequencywas25kHz(0.04ms)andtheblocksizewas1024bit.Fig.2TestequipmentFig.3PrincipleofthemeasurementsFig.4Responseofthepressurewaveatdetectionpointone(upper,dottedline)andtwo(lower,dashedline).NotethepressuredifferencebetweenthedetectionpointsbecauseofflowWorldAcademyofScience,EngineeringandTechnology492009612Fig.5Samecaseasabove.Thetimedifferencebetweenthedetectionpointscanbereadfromthesurveybox.NotethatthelinesaremodifiedforpublishingbydecreasingtheirresolutionsnotablyfromtheoriginalThevolumeflowofthetestequipmentQcanbeestimatedwiththeHagen-Poiseulleequation(3)27Q=)(128214ppld(3)wheredispipediameter,isdynamicviscosity,lispipelength,p1ispressureatpoint1andp2ispressureatpoint2.Duringthemeasurementspressurewillvaryfromzeroto0.5bar(pipelength2.75m)ortoalmostonebar(pipelength4.26m).Thismeansthattheabsolutemaximumflow,whichisevenoverestimatedhereonpurpose,isconstantlylessthan1.2l/min(0.4m/s)atatemperatureof18Canditseffectontheresultsisimpossibletonoticeinthisarrangement.FluidviscositywasmeasuredwithaBrookfieldDV-II+rotationviscometeranddensitybyusingthespecificweightmethod(weighinganaccuratevolumeofthefluidatthedesiredtemperature).Fluiddensitywas874kg/m3atatemperatureof18Cand864kg/m3atatemperatureof40C.Thedynamicfluidviscositiesatthecorrespondingtemperatureswere121cPand42cP.Thefluidwasacommercialmineraloil-basedhydraulicoil.IV.RESULTSOFMEASUREMENTSAltogether545measurementswereanalyzed.Theaveragepressureofthemeasurementswas2.9barandthemeasuredaveragepressurewavevelocity(soundvelocity),1377m/s.TheresultsofallthemeasurementsarepresentedinFig.6,whichindicatesthemagnitudeofthewavevelocityinthepressurerangebetween0.2barand6bar.InFig.6themeasuredresultsoftheflowsituationandnon-flowsituationaresep
溫馨提示
- 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶(hù)所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶(hù)上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶(hù)上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶(hù)因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 業(yè)務(wù)績(jī)效合同范例
- it設(shè)備購(gòu)買(mǎi)合同范例
- 人教部編版小學(xué)語(yǔ)文字4猜字謎教學(xué)教案多篇
- 公建房使用合同范例
- 公司部分收購(gòu)合同范例
- 個(gè)人漁船雇員合同范例
- 供銷(xiāo)石料合同范例
- 企業(yè)買(mǎi)車(chē)合同范例
- 停車(chē)合同范例
- 亳州2025年安徽亳州市中醫(yī)院招聘工作人員37人筆試歷年參考題庫(kù)附帶答案詳解
- ISO9001-2015質(zhì)量管理體系文件全套質(zhì)量手冊(cè)、程序文件
- 無(wú)損檢測(cè)概論(第一)96957課件
- LY/T 1956-2011縣級(jí)林地保護(hù)利用規(guī)劃編制技術(shù)規(guī)程
- GB/T 40289-2021光伏發(fā)電站功率控制系統(tǒng)技術(shù)要求
- 供貨方案模版(15篇)
- 研究生二級(jí)學(xué)科證明
- 設(shè)計(jì)變更單表格
- 湖南美術(shù)出版社五年級(jí)下冊(cè)書(shū)法練習(xí)指導(dǎo)
- 《高分子物理》配套教學(xué)課件
- 《工程化學(xué)》課程教學(xué)大綱
- 良性前列腺增生診療指南
評(píng)論
0/150
提交評(píng)論