![九年級數(shù)學(xué)二次函數(shù)與圓知識點(diǎn)總結(jié)_(2)_第1頁](http://file1.renrendoc.com/fileroot_temp2/2021-1/16/87974d5d-0309-4dd2-b39c-9d530b250292/87974d5d-0309-4dd2-b39c-9d530b2502921.gif)
![九年級數(shù)學(xué)二次函數(shù)與圓知識點(diǎn)總結(jié)_(2)_第2頁](http://file1.renrendoc.com/fileroot_temp2/2021-1/16/87974d5d-0309-4dd2-b39c-9d530b250292/87974d5d-0309-4dd2-b39c-9d530b2502922.gif)
![九年級數(shù)學(xué)二次函數(shù)與圓知識點(diǎn)總結(jié)_(2)_第3頁](http://file1.renrendoc.com/fileroot_temp2/2021-1/16/87974d5d-0309-4dd2-b39c-9d530b250292/87974d5d-0309-4dd2-b39c-9d530b2502923.gif)
![九年級數(shù)學(xué)二次函數(shù)與圓知識點(diǎn)總結(jié)_(2)_第4頁](http://file1.renrendoc.com/fileroot_temp2/2021-1/16/87974d5d-0309-4dd2-b39c-9d530b250292/87974d5d-0309-4dd2-b39c-9d530b2502924.gif)
![九年級數(shù)學(xué)二次函數(shù)與圓知識點(diǎn)總結(jié)_(2)_第5頁](http://file1.renrendoc.com/fileroot_temp2/2021-1/16/87974d5d-0309-4dd2-b39c-9d530b250292/87974d5d-0309-4dd2-b39c-9d530b2502925.gif)
版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡介
1、初三數(shù)學(xué)知識點(diǎn)總結(jié)1. 一元二次方程的一般形式: a0時,ax2+bx+c=0叫一元二次方程的一般形式,研究一元二次方程的有關(guān)問題時,多數(shù)習(xí)題要先化為一般形式,目的是確定一般形式中的a、 b、 c; 其中a 、 b,、c可能是具體數(shù),也可能是含待定字母或特定式子的代數(shù)式.2. 一元二次方程的解法: 一元二次方程的四種解法要求靈活運(yùn)用, 其中直接開平方法雖然簡單,但是適用范圍較??;公式法雖然適用范圍大,但計(jì)算較繁,易發(fā)生計(jì)算錯誤;因式分解法適用范圍較大,且計(jì)算簡便,是首選方法;配方法使用較少.3. 一元二次方程根的判別式: 當(dāng)ax2+bx+c=0 (a0)時,=b2-4ac 叫一元二次方程根的判
2、別式.請注意以下等價(jià)命題:0 有兩個不等的實(shí)根; =0 有兩個相等的實(shí)根;0 無實(shí)根; 0 有兩個實(shí)根(等或不等).4. 一元二次方程的根系關(guān)系: 當(dāng)ax2+bx+c=0 (a0) 時,如0,有下列公式: 5當(dāng)ax2+bx+c=0 (a0) 時,有以下等價(jià)命題:(以下等價(jià)關(guān)系要求會用公式 ;=b2-4ac 分析,不要求背記)(1)兩根互為相反數(shù) = 0且0 b = 0且0;(2)兩根互為倒數(shù) =1且0 a = c且0;(3)只有一個零根 = 0且0 c = 0且b0;(4)有兩個零根 = 0且= 0 c = 0且b=0;(5)至少有一個零根 =0 c=0;(6)兩根異號 0 a、c異號;(7)
3、兩根異號,正根絕對值大于負(fù)根絕對值 0且0 a、c異號且a、b異號;(8)兩根異號,負(fù)根絕對值大于正根絕對值 0且0 a、c異號且a、b同號;(9)有兩個正根 0,0且0 a、c同號, a、b異號且0;(10)有兩個負(fù)根 0,0且0 a、c同號, a、b同號且0.6求根法因式分解二次三項(xiàng)式公式:注意:當(dāng) 0時,二次三項(xiàng)式在實(shí)數(shù)范圍內(nèi)不能分解.ax2+bx+c=a(x-x1)(x-x2) 或 ax2+bx+c=.7求一元二次方程的公式: x2 -(x1+x2)x + x1x2 = 0. 注意:所求出方程的系數(shù)應(yīng)化為整數(shù).8平均增長率問題-應(yīng)用題的類型題之一 (設(shè)增長率為x): (1) 第一年為
4、a , 第二年為a(1+x) , 第三年為a(1+x)2.(2)常利用以下相等關(guān)系列方程: 第三年=第三年 或 第一年+第二年+第三年=總和.9分式方程的解法:10. 二元二次方程組的解法:11幾個常見轉(zhuǎn)化: ; ; 圓 1.垂徑定理及推論: 如圖:有五個元素,“知二可推三”;需記憶其中四個定理,即“垂徑定理”“中徑定理” “弧徑定理”“中垂定理”. 幾何表達(dá)式舉例: CD過圓心CDAB2.平行線夾弧定理:圓的兩條平行弦所夾的弧相等.幾何表達(dá)式舉例:3.“角、弦、弧、距”定理:(同圓或等圓中)“等角對等弦”; “等弦對等角”; “等角對等弧”; “等弧對等角”;“等弧對等弦”;“等弦對等(優(yōu),
5、劣)弧”;“等弦對等弦心距”;“等弦心距對等弦”.幾何表達(dá)式舉例:(1) AOB=COD AB = CD (2) AB = CDAOB=COD4圓周角定理及推論:(1)圓周角的度數(shù)等于它所對的弧的度數(shù)的一半;(2)一條弧所對的圓周角等于它所對的圓心角的一半;(如圖)(3)“等弧對等角”“等角對等弧”;(4)“直徑對直角”“直角對直徑”;(如圖)(5)如三角形一邊上的中線等于這邊的一半,那么這個三角形是直角三角形.(如圖)(1) (2)(3) (4)幾何表達(dá)式舉例:(1) ACB=AOB (2) AB是直徑 ACB=90(3) ACB=90 AB是直徑(4) CD=AD=BD ABC是Rt 5圓
6、內(nèi)接四邊形性質(zhì)定理:圓內(nèi)接四邊形的對角互補(bǔ),并且任何一個外角都等于它的內(nèi)對角.幾何表達(dá)式舉例: ABCD是圓內(nèi)接四邊形 CDE =ABCC+A =1806切線的判定與性質(zhì)定理:如圖:有三個元素,“知二可推一”;需記憶其中四個定理.(1)經(jīng)過半徑的外端并且垂直于這條半徑的直線是圓的切線;(2)圓的切線垂直于經(jīng)過切點(diǎn)的半徑;(3)經(jīng)過圓心且垂直于切線的直線必經(jīng)過切點(diǎn);(4)經(jīng)過切點(diǎn)且垂直于切線的直線必經(jīng)過圓心.幾何表達(dá)式舉例:(1) OC是半徑OCABAB是切線(2) OC是半徑AB是切線 OCAB(3) 7切線長定理:從圓外一點(diǎn)引圓的兩條切線,它們的切線長相等;圓心和這一點(diǎn)的連線平分兩條切線的夾
7、角.幾何表達(dá)式舉例: PA、PB是切線 PA=PBPO過圓心APO =BPO8弦切角定理及其推論:(1)弦切角等于它所夾的弧對的圓周角;(2)如果兩個弦切角所夾的弧相等,那么這兩個弦切角也相等;(3)弦切角的度數(shù)等于它所夾的弧的度數(shù)的一半.(如圖) 幾何表達(dá)式舉例:(1)BD是切線,BC是弦CBD =CAB(2) ED,BC是切線 CBA =DEF9相交弦定理及其推論:(1)圓內(nèi)的兩條相交弦,被交點(diǎn)分成的兩條線段長的乘積相等;(2)如果弦與直徑垂直相交,那么弦的一半是它分直徑所成的兩條線段長的比例中項(xiàng). 幾何表達(dá)式舉例:(1) PAPB=PCPD(2) AB是直徑PCABPC2=PAPB10切
8、割線定理及其推論:(1)從圓外一點(diǎn)引圓的切線和割線,切線長是這點(diǎn)到割線與圓交點(diǎn)的兩條線段長的比例中項(xiàng);(2)從圓外一點(diǎn)引圓的兩條割線,這一點(diǎn)到每條割線與圓的交點(diǎn)的兩條線段長的積相等. 幾何表達(dá)式舉例:(1) PC是切線,PB是割線PC2=PAPB(2) PB、PD是割線PAPB=PCPD11關(guān)于兩圓的性質(zhì)定理:(1)相交兩圓的連心線垂直平分兩圓的公共弦;(2)如果兩圓相切,那么切點(diǎn)一定在連心線上. (1) (2)幾何表達(dá)式舉例:(1) O1,O2是圓心O1O2垂直平分AB(2) 1 、2相切O1 、A、O2三點(diǎn)一線12正多邊形的有關(guān)計(jì)算:(1)中心角an ,半徑RN , 邊心距rn , 邊長a
9、n ,內(nèi)角bn , 邊數(shù)n;(2)有關(guān)計(jì)算在RtAOC中進(jìn)行.公式舉例:(1) an =;(2) 幾何B級概念:(要求理解、會講、會用,主要用于填空和選擇題)一 基本概念:圓的幾何定義和集合定義、 弦、 弦心距、 弧、 等弧、 弓形、弓形高三角形的外接圓、三角形的外心、三角形的內(nèi)切圓、 三角形的內(nèi)心、 圓心角、圓周角、 弦切角、 圓的切線、 圓的割線、 兩圓的內(nèi)公切線、 兩圓的外公切線、 兩圓的內(nèi)(外)公切線長、 正多邊形、 正多邊形的中心、 正多邊形的半徑、 正多邊形的邊心距、 正多邊形的中心角.二 定理:1不在一直線上的三個點(diǎn)確定一個圓.2任何正多邊形都有一個外接圓和一個內(nèi)切圓,這兩個圓是
10、同心圓.3正n邊形的半徑和邊心距把正n邊形分為2n個全等的直角三角形.三 公式:1.有關(guān)的計(jì)算:(1)圓的周長C=2R;(2)弧長L=;(3)圓的面積S=R2. (4)扇形面積S扇形 =;(5)弓形面積S弓形 =扇形面積SAOBAOB的面積.(如圖)2.圓柱與圓錐的側(cè)面展開圖:(1)圓柱的側(cè)面積:S圓柱側(cè) =2rh; (r:底面半徑;h:圓柱高)(2)圓錐的側(cè)面積:S圓錐側(cè) =. (L=2r,R是圓錐母線長;r是底面半徑)四 常識:1 圓是軸對稱和中心對稱圖形.2 圓心角的度數(shù)等于它所對弧的度數(shù).3 三角形的外心 兩邊中垂線的交點(diǎn) 三角形的外接圓的圓心;三角形的內(nèi)心 兩內(nèi)角平分線的交點(diǎn) 三角形
11、的內(nèi)切圓的圓心.4 直線與圓的位置關(guān)系:(其中d表示圓心到直線的距離;其中r表示圓的半徑)直線與圓相交 dr ; 直線與圓相切 d=r ; 直線與圓相離 dr.5 圓與圓的位置關(guān)系:(其中d表示圓心到圓心的距離,其中R、r表示兩個圓的半徑且Rr)兩圓外離 dR+r; 兩圓外切 d=R+r; 兩圓相交 R-rdR+r;兩圓內(nèi)切 d=R-r; 兩圓內(nèi)含 dR-r.6證直線與圓相切,常利用:“已知交點(diǎn)連半徑證垂直”和“不知交點(diǎn)作垂直證半徑” 的方法加輔助線. 7關(guān)于圓的常見輔助線:已知弦構(gòu)造弦心距.已知弦構(gòu)造Rt.已知直徑構(gòu)造直角.已知切線連半徑,出垂直.圓外角轉(zhuǎn)化為圓周角.圓內(nèi)角轉(zhuǎn)化為圓周角.構(gòu)造垂徑定理.構(gòu)造相似形.兩圓內(nèi)切,構(gòu)造外公切線與垂直.兩圓內(nèi)切,構(gòu)造外公切線與平行.兩圓外切,構(gòu)造內(nèi)公切線與垂直.兩圓外切,構(gòu)造內(nèi)公切線與平行.兩圓同心,作弦心距,可證得AC=DB. 兩圓相交構(gòu)造公共弦,連結(jié)圓心構(gòu)造中垂線.PA、PB是切線,構(gòu)造雙垂圖形和全等.相交弦出相似.一切一割出相似, 并且構(gòu)造弦切角.兩割出相似,并且構(gòu)造圓周角.雙垂出相似
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- HO-PEG3-CH2-6-Cl-生命科學(xué)試劑-MCE-6427
- CP-LC-0743-生命科學(xué)試劑-MCE-6886
- 5-Hydroxy-9-S-hexahydrocannabinol-生命科學(xué)試劑-MCE-2639
- 二零二五年度互聯(lián)網(wǎng)醫(yī)療企業(yè)股權(quán)并購協(xié)議
- 二零二五年度白酒新品全國市場推廣與銷售代理協(xié)議
- 2025年度二零二五年度終止股權(quán)轉(zhuǎn)讓終止協(xié)議
- 二零二五年度終止體育賽事組織勞務(wù)終止合同
- 二零二五年度蔬菜大棚租賃與農(nóng)業(yè)循環(huán)經(jīng)濟(jì)合作協(xié)議
- 施工現(xiàn)場施工防生物戰(zhàn)爭威脅制度
- 施工圍蔽項(xiàng)目特征描述
- 沈陽市第一屆“舒心傳技 莘紳向陽”職業(yè)技能大賽技術(shù)工作文件-27-全媒體運(yùn)營師
- 安全生產(chǎn)網(wǎng)格員培訓(xùn)
- 統(tǒng)編版語文三年級下冊第三單元綜合性學(xué)習(xí)中華傳統(tǒng)節(jié)日 活動設(shè)計(jì)
- 降低順產(chǎn)產(chǎn)婦產(chǎn)后2小時失血率PDCA成果匯報(bào)書
- 小學(xué)數(shù)學(xué)分?jǐn)?shù)四則混合運(yùn)算300題帶答案
- 2024年考研(英語一)真題及參考答案
- 林下野雞養(yǎng)殖建設(shè)項(xiàng)目可行性研究報(bào)告
- 心肺復(fù)蘇術(shù)課件2024新版
- 苜蓿青貯料質(zhì)量分級DB41-T 1906-2019
- 新鮮牛肉購銷合同模板
- 2024年內(nèi)蒙古呼和浩特市中考文科綜合試題卷(含答案)
評論
0/150
提交評論