初中數(shù)學(xué)全部知識(shí)點(diǎn)和經(jīng)典練習(xí)題[1]_第1頁(yè)
初中數(shù)學(xué)全部知識(shí)點(diǎn)和經(jīng)典練習(xí)題[1]_第2頁(yè)
初中數(shù)學(xué)全部知識(shí)點(diǎn)和經(jīng)典練習(xí)題[1]_第3頁(yè)
初中數(shù)學(xué)全部知識(shí)點(diǎn)和經(jīng)典練習(xí)題[1]_第4頁(yè)
初中數(shù)學(xué)全部知識(shí)點(diǎn)和經(jīng)典練習(xí)題[1]_第5頁(yè)
已閱讀5頁(yè),還剩98頁(yè)未讀, 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡(jiǎn)介

1、初中數(shù)學(xué)重點(diǎn)知識(shí)點(diǎn)初中數(shù)學(xué)重點(diǎn)知識(shí)點(diǎn) 解析與教學(xué)建議解析與教學(xué)建議 知識(shí)點(diǎn)知識(shí)點(diǎn) 了了 解解 理理 解解 掌掌 握握 應(yīng)應(yīng) 用用 注注 釋釋 函函 數(shù)數(shù) 常量、變量的意常量、變量的意 義義 確定自變確定自變 量的取值量的取值 范圍僅限范圍僅限 于整式。于整式。 分式和簡(jiǎn)分式和簡(jiǎn) 單實(shí)際問單實(shí)際問 題。題。 函數(shù)的意義及三函數(shù)的意義及三 種表示方法種表示方法 函數(shù)值、自變量函數(shù)值、自變量 取值范圍取值范圍 簡(jiǎn)單函數(shù)模型、簡(jiǎn)單函數(shù)模型、 規(guī)律探索規(guī)律探索 課標(biāo)解讀課標(biāo)解讀 知識(shí)點(diǎn)知識(shí)點(diǎn) 了了 解解 理理 解解 掌掌 握握 應(yīng)應(yīng) 用用 注注 釋釋 一一 次次 函函 數(shù)數(shù) 一次函數(shù)、正一次函數(shù)、正 比

2、例函數(shù)的意比例函數(shù)的意 義義 性質(zhì)指由可性質(zhì)指由可k k、 b b值確定圖象值確定圖象 的變化情況的變化情況 一次函數(shù)性質(zhì)、一次函數(shù)性質(zhì)、 圖象圖象 一次函數(shù)模型一次函數(shù)模型 知識(shí)點(diǎn)知識(shí)點(diǎn) 了了 解解 理理 解解 掌掌 握握 應(yīng)應(yīng) 用用 注注 釋釋 反反 比比 例例 函函 數(shù)數(shù) 反比例函數(shù)的反比例函數(shù)的 意義意義 性質(zhì)指由性質(zhì)指由k k值值 確定圖象的變確定圖象的變 化情況化情況 反比例函數(shù)性反比例函數(shù)性 質(zhì)、圖象質(zhì)、圖象 反比例函數(shù)模反比例函數(shù)模 型型 知識(shí)點(diǎn)知識(shí)點(diǎn) 了 了 解解 理理 解解 掌掌 握握 應(yīng)應(yīng) 用用 注注 釋釋 二二 次次 函函 數(shù)數(shù) 二次函數(shù)的意二次函數(shù)的意 義義 與性質(zhì)相

3、關(guān)與性質(zhì)相關(guān) 的公式不要的公式不要 求推導(dǎo),但求推導(dǎo),但 建議要牢建議要牢 記記 二次函數(shù)性質(zhì)二次函數(shù)性質(zhì) 及其圖象及其圖象 二次函數(shù)模型二次函數(shù)模型 考試內(nèi)容與要求考試內(nèi)容與要求 1 1函數(shù)函數(shù) 考試內(nèi)容:考試內(nèi)容: 常量、變量、函數(shù);自變量的取值范圍和函常量、變量、函數(shù);自變量的取值范圍和函 數(shù)值:函數(shù)的表示方法。數(shù)值:函數(shù)的表示方法。 考試要求考試要求 (1 1)通過簡(jiǎn)單實(shí)例,了解常量、變量的意義。)通過簡(jiǎn)單實(shí)例,了解常量、變量的意義。 (2 2)能結(jié)合實(shí)例,了解函數(shù)的概念和三種表示方)能結(jié)合實(shí)例,了解函數(shù)的概念和三種表示方 法,能舉出函數(shù)的實(shí)例。法,能舉出函數(shù)的實(shí)例。 (3 3)能結(jié)合

4、圖像對(duì)簡(jiǎn)單實(shí)際問題中的函數(shù)關(guān)系進(jìn))能結(jié)合圖像對(duì)簡(jiǎn)單實(shí)際問題中的函數(shù)關(guān)系進(jìn) 行分析。行分析。 (4 4)能確定簡(jiǎn)單的整式、分式和簡(jiǎn)單實(shí)際問題中)能確定簡(jiǎn)單的整式、分式和簡(jiǎn)單實(shí)際問題中 的函數(shù)的自變量取值范圍,并會(huì)求出函數(shù)值。的函數(shù)的自變量取值范圍,并會(huì)求出函數(shù)值。 (5 5)能用適當(dāng)?shù)暮瘮?shù)表示法刻畫實(shí)際問題中變量)能用適當(dāng)?shù)暮瘮?shù)表示法刻畫實(shí)際問題中變量 之間的關(guān)系。之間的關(guān)系。 (6 6)結(jié)合對(duì)函數(shù)關(guān)系的分析,嘗試對(duì)變量的變化)結(jié)合對(duì)函數(shù)關(guān)系的分析,嘗試對(duì)變量的變化 規(guī)律進(jìn)行初步預(yù)測(cè)。規(guī)律進(jìn)行初步預(yù)測(cè)。 2 2一次函數(shù)一次函數(shù) 考試內(nèi)容:考試內(nèi)容: 正比例函數(shù)及其圖象;一次函數(shù);一次函正比例函數(shù)

5、及其圖象;一次函數(shù);一次函 數(shù)的圖象和性質(zhì);一次函數(shù)與二元一次方數(shù)的圖象和性質(zhì);一次函數(shù)與二元一次方 程組的關(guān)系;一次函數(shù)的應(yīng)用程組的關(guān)系;一次函數(shù)的應(yīng)用 考試要求考試要求 (1 1)結(jié)合具體情景體會(huì)一次函數(shù)的意義,根據(jù)已)結(jié)合具體情景體會(huì)一次函數(shù)的意義,根據(jù)已 知條件確定一次函數(shù)表達(dá)式知條件確定一次函數(shù)表達(dá)式 (2 2)會(huì)畫一次函數(shù)的圖像,根據(jù)一次函數(shù)的圖像)會(huì)畫一次函數(shù)的圖像,根據(jù)一次函數(shù)的圖像 和解析表達(dá)式和解析表達(dá)式 探索并理解其性質(zhì)(探索并理解其性質(zhì)(k0k0或或k0k0k0或或k0k0時(shí)圖像的變化時(shí)圖像的變化 情況)情況) (3 3)能用反比例函數(shù)解決簡(jiǎn)單的實(shí)際問題。)能用反比例函

6、數(shù)解決簡(jiǎn)單的實(shí)際問題。 4 4二次函數(shù)二次函數(shù) 考試內(nèi)容:考試內(nèi)容:二次函數(shù);二次函數(shù)的圖象和性質(zhì);二次函數(shù);二次函數(shù)的圖象和性質(zhì); 拋物線的頂點(diǎn)、對(duì)稱軸和開口方向;二次函數(shù)與拋物線的頂點(diǎn)、對(duì)稱軸和開口方向;二次函數(shù)與 一元二次方程組的關(guān)系;二次函數(shù)的應(yīng)用。一元二次方程組的關(guān)系;二次函數(shù)的應(yīng)用。 考試要求考試要求 (1 1)通過對(duì)實(shí)際問題情境的分析確定二次函數(shù)的)通過對(duì)實(shí)際問題情境的分析確定二次函數(shù)的 表達(dá)式,體會(huì)二次函數(shù)的意義。表達(dá)式,體會(huì)二次函數(shù)的意義。 (2 2)會(huì)用描點(diǎn)法畫二次函數(shù)的圖像,能從圖像上)會(huì)用描點(diǎn)法畫二次函數(shù)的圖像,能從圖像上 認(rèn)識(shí)二次函數(shù)的性質(zhì)。認(rèn)識(shí)二次函數(shù)的性質(zhì)。 (3

7、 3)會(huì)根據(jù)公式確定圖像的頂點(diǎn)、開口方向和對(duì))會(huì)根據(jù)公式確定圖像的頂點(diǎn)、開口方向和對(duì) 稱軸(公式不要求記憶和推導(dǎo)),并能解決簡(jiǎn)單實(shí)稱軸(公式不要求記憶和推導(dǎo)),并能解決簡(jiǎn)單實(shí) 際問題。際問題。 (4 4) 能用二次函數(shù)的圖像求一元二次方程的近似能用二次函數(shù)的圖像求一元二次方程的近似 解解 題型形式題型形式 1 1考查函數(shù)的基本概念考查函數(shù)的基本概念 例1(2008年郴州市)如果點(diǎn)M在直線y=x-1上,則M點(diǎn) 的坐標(biāo)可以是( ) A(1,0) B(0,1) C(1, 0) D(1,1) 例2(2008年南昌市)下列四個(gè)點(diǎn),在反比例函數(shù) 圖象上的是( ) A(1,-6) B(2,4) C(3,-2

8、) D(-6,-1) 6 y x 例3(2008福建福州)已知拋物線 與x軸的一個(gè)交點(diǎn)為(m,0),則代數(shù)式 的值為( ) A2006B2007C2008D2009 2 1yxx 2 2008mm 評(píng):以上三題是三種不同函數(shù)的基本概評(píng):以上三題是三種不同函數(shù)的基本概 念(點(diǎn)與函數(shù)的關(guān)系)念(點(diǎn)與函數(shù)的關(guān)系) 例4(2008年泰州市)根據(jù)流程 右邊圖中的程序,當(dāng)輸入數(shù)值x 為2時(shí),輸出數(shù)值y為 A4 B6 C8 D10 例5 任意給定一個(gè)非零數(shù),按下列程序計(jì)算,最 后輸出的結(jié)果是( ) 評(píng):以上兩題是函數(shù)的不同的表達(dá)形式。評(píng):以上兩題是函數(shù)的不同的表達(dá)形式。 2 2考查函數(shù)的取值范圍與意義考查函

9、數(shù)的取值范圍與意義 評(píng):求函數(shù)的定義域是最基本的知識(shí)點(diǎn)。評(píng):求函數(shù)的定義域是最基本的知識(shí)點(diǎn)。 例3(2008年桂林市)2008年5月12日,四川汶川發(fā) 生8.0級(jí)大地震,我解放軍某部火速向?yàn)?zāi)區(qū)推進(jìn),最 初坐車以某一速度勻速前進(jìn),中途由于道路出現(xiàn)泥 石流,被阻停下,耽誤了一段時(shí)間,為了盡快趕到 災(zāi)區(qū)救援,官兵們下車急行軍勻速步行前往,下列 是官兵們行進(jìn)的距離(千米)與行進(jìn)時(shí)間t(小時(shí)) 的函數(shù)大致圖像,你認(rèn)為正確的是() 例4(2008鹽城)如圖,A、B、C、D為O的四等分點(diǎn), 動(dòng)點(diǎn)P從圓心O出發(fā),沿O C D O路線作勻速 運(yùn)動(dòng)設(shè)運(yùn)動(dòng)時(shí)間為t(s),APB=y(),則下 列圖象中表示y與t之間

10、函數(shù)關(guān)系最恰當(dāng)?shù)氖?例5 ( 2008年杭州市) 如圖, 水以恒速(即單位時(shí)間 內(nèi)注入水的體積相同)注入下面四種底面積相同的容 器中, (1) 請(qǐng)分別找出與各容器對(duì)應(yīng)的水的高度和 時(shí)間的函數(shù)關(guān)系圖象, 用直線段連接起來(lái); (2) 當(dāng) 容器中的水恰好達(dá)到一半高度時(shí), 請(qǐng)?jiān)诤瘮?shù)關(guān)系圖 的軸上標(biāo)出此時(shí)值對(duì)應(yīng)點(diǎn)的位置. (a) 對(duì)應(yīng)關(guān)系連接如下: (b) 當(dāng)容器中的水恰好達(dá)到一半高度時(shí), 函數(shù)關(guān) 系圖上的位置如上: 例6 (20082008年寧波市年寧波市) )如圖,某 電信公司提供了A,B兩種方案的 移動(dòng)通訊費(fèi)用y(元)與通話時(shí) 間x(元)之間的關(guān)系,則以下 說法錯(cuò)誤的是( ) A若通話時(shí)間少于12

11、0分,則方案比方案便宜20元 B若通話時(shí)間超過200分,則方案比方案便宜12元 C若通訊費(fèi)用為60元,則方案比方案的通話時(shí)間多 D若兩種方案通訊費(fèi)用相差10元,則通話時(shí)間是 145分或185分 評(píng):識(shí)別函數(shù)表示某種意義是函數(shù)學(xué)習(xí)的評(píng):識(shí)別函數(shù)表示某種意義是函數(shù)學(xué)習(xí)的 根本目的。根本目的。 3 3考查函數(shù)的圖像與性質(zhì)(數(shù)形結(jié)合)考查函數(shù)的圖像與性質(zhì)(數(shù)形結(jié)合) 例1(2008年義烏市)李老師給出了一個(gè)函數(shù),甲、 乙、丙三位學(xué)生分別指出這個(gè)函數(shù) 的一個(gè)特征甲:它的圖像經(jīng)過第一象限;乙:它 的圖像也經(jīng)過第二象限;丙:在第一象限內(nèi)函數(shù)值 y隨x增大而增大在你學(xué)過的函數(shù)中,寫出一個(gè)滿 足上述特征的函數(shù)解

12、析式 例2(2008茂名)已知反比例函數(shù) 的圖象, 在每一象限內(nèi),的值隨值的增大而減少,則一次函 數(shù) 的圖象不經(jīng)過( ) 第一象限 第二象限 第三象限 第四象限 (0) a ya x yaxa 評(píng):一次函數(shù)、反比例函數(shù)與二次函數(shù)是初中評(píng):一次函數(shù)、反比例函數(shù)與二次函數(shù)是初中 函數(shù)的支撐,學(xué)習(xí)它們就必須要知道它們的圖函數(shù)的支撐,學(xué)習(xí)它們就必須要知道它們的圖 像及其性質(zhì)。像及其性質(zhì)。 4 4考查函數(shù)與其它知識(shí)點(diǎn)的聯(lián)系考查函數(shù)與其它知識(shí)點(diǎn)的聯(lián)系 評(píng):函數(shù)與方程、不等式等許多知識(shí)點(diǎn)的評(píng):函數(shù)與方程、不等式等許多知識(shí)點(diǎn)的 結(jié)合,使函數(shù)的學(xué)習(xí)更加豐富而靈動(dòng)。結(jié)合,使函數(shù)的學(xué)習(xí)更加豐富而靈動(dòng)。 5 5考查函

13、數(shù)的應(yīng)用(考查函數(shù)的應(yīng)用(1 1)代數(shù)應(yīng)用)代數(shù)應(yīng)用 例例1 (20081 (2008年安徽省年安徽省) )剛回營(yíng)地的兩個(gè)搶險(xiǎn)分隊(duì)又接剛回營(yíng)地的兩個(gè)搶險(xiǎn)分隊(duì)又接 到救災(zāi)命令:一分隊(duì)立即出發(fā)往到救災(zāi)命令:一分隊(duì)立即出發(fā)往3030千米的千米的A A鎮(zhèn);二分鎮(zhèn);二分 隊(duì)因疲勞可在營(yíng)地休息隊(duì)因疲勞可在營(yíng)地休息a a(0a30a3)小時(shí)再往)小時(shí)再往A A鎮(zhèn)參鎮(zhèn)參 加救災(zāi)。一分隊(duì)出發(fā)后得知,唯一通往加救災(zāi)。一分隊(duì)出發(fā)后得知,唯一通往A A鎮(zhèn)的道路在鎮(zhèn)的道路在 離營(yíng)地離營(yíng)地1010千米處發(fā)生塌方,塌方地形復(fù)雜,必須由千米處發(fā)生塌方,塌方地形復(fù)雜,必須由 一分隊(duì)用一分隊(duì)用1 1小時(shí)打通道路,已知一分隊(duì)的行進(jìn)

14、速度為小時(shí)打通道路,已知一分隊(duì)的行進(jìn)速度為 5 5千米千米/ /時(shí),二分隊(duì)的行進(jìn)速度為(時(shí),二分隊(duì)的行進(jìn)速度為(4 4a a)千米)千米/ /時(shí)。時(shí)。 若二分隊(duì)在營(yíng)地不休息,問二分隊(duì)幾小時(shí)能趕若二分隊(duì)在營(yíng)地不休息,問二分隊(duì)幾小時(shí)能趕 到到A A鎮(zhèn)?鎮(zhèn)? 若二分隊(duì)和一分隊(duì)同時(shí)趕到若二分隊(duì)和一分隊(duì)同時(shí)趕到A A鎮(zhèn),二分隊(duì)?wèi)?yīng)在營(yíng)鎮(zhèn),二分隊(duì)?wèi)?yīng)在營(yíng) 地休息幾小時(shí)?地休息幾小時(shí)? 下列圖象中,下列圖象中,分別描述一分隊(duì)和二分隊(duì)離分別描述一分隊(duì)和二分隊(duì)離A A鎮(zhèn)鎮(zhèn) 的距離的距離y(y(千米千米) )和時(shí)間和時(shí)間x(x(小時(shí)小時(shí)) )的函數(shù)關(guān)系,請(qǐng)寫出你的函數(shù)關(guān)系,請(qǐng)寫出你 認(rèn)為所有可能合理的代號(hào),并說明它們

15、的實(shí)際意義。認(rèn)為所有可能合理的代號(hào),并說明它們的實(shí)際意義。 例例2 2(20082008年巴中市)為預(yù)防年巴中市)為預(yù)防“手足口病手足口病”,某校對(duì),某校對(duì) 教室進(jìn)行教室進(jìn)行“藥熏消毒藥熏消毒”已知藥物燃燒階段,室內(nèi)每已知藥物燃燒階段,室內(nèi)每 立方米空氣中的含藥量立方米空氣中的含藥量y y(mgmg)與燃燒時(shí)間)與燃燒時(shí)間x x(分鐘)(分鐘) 成正比例;燃燒后,成正比例;燃燒后,y y與與x x成反比例(如圖所示)現(xiàn)成反比例(如圖所示)現(xiàn) 測(cè)得藥物測(cè)得藥物1010分鐘燃完,此時(shí)教室內(nèi)每立方米空氣含藥分鐘燃完,此時(shí)教室內(nèi)每立方米空氣含藥 量為量為8mg8mg據(jù)以上信息解答下列問題:據(jù)以上信息解

16、答下列問題: 求藥物燃燒時(shí)與的函數(shù)求藥物燃燒時(shí)與的函數(shù) 關(guān)系式關(guān)系式 求藥物燃燒后與的函數(shù)求藥物燃燒后與的函數(shù) 關(guān)系式關(guān)系式 當(dāng)每立方米空氣中含藥當(dāng)每立方米空氣中含藥 量低于量低于1.6mg1.6mg時(shí),對(duì)人體時(shí),對(duì)人體 方能無(wú)毒害作用,那么從方能無(wú)毒害作用,那么從 消毒開始,經(jīng)多長(zhǎng)時(shí)間學(xué)消毒開始,經(jīng)多長(zhǎng)時(shí)間學(xué) 生才可以回教室?生才可以回教室? 例3(2008年自貢市)抗震救災(zāi)中,某縣糧食局為了 保證庫(kù)存糧食的安全,決定將甲、乙兩個(gè)倉(cāng)庫(kù)的糧食, 全部轉(zhuǎn)移到具有較強(qiáng)抗震功能的A、B兩倉(cāng)庫(kù)。已知甲 庫(kù)有糧食100噸,乙?guī)煊屑Z食80噸,而A庫(kù)的容量為70 噸,B庫(kù)的容量為110噸。從甲、乙兩庫(kù)到A、

17、B兩庫(kù)的 路程和運(yùn)費(fèi)如下表(表中“元/噸千米”表示每噸 糧食運(yùn)送1千米所需人民幣) 若甲庫(kù)運(yùn)往若甲庫(kù)運(yùn)往A A庫(kù)糧食噸,請(qǐng)寫出將糧食運(yùn)往庫(kù)糧食噸,請(qǐng)寫出將糧食運(yùn)往A A、B B兩兩 庫(kù)的總運(yùn)費(fèi)庫(kù)的總運(yùn)費(fèi)y y(元)與(元)與x x(噸)的函數(shù)關(guān)系式(噸)的函數(shù)關(guān)系式 當(dāng)甲、乙兩庫(kù)各運(yùn)往當(dāng)甲、乙兩庫(kù)各運(yùn)往A A、B B兩庫(kù)多少噸糧食時(shí),總運(yùn)兩庫(kù)多少噸糧食時(shí),總運(yùn) 費(fèi)最省,最省的總運(yùn)費(fèi)是多少?費(fèi)最省,最省的總運(yùn)費(fèi)是多少? 例例4 4(20082008年荊州市)年荊州市)“5 512”12”汶川大地震后,某健身汶川大地震后,某健身 器材銷售公司通過當(dāng)?shù)仄鞑匿N售公司通過當(dāng)?shù)亍凹t十字會(huì)紅十字會(huì)”向?yàn)?zāi)區(qū)獻(xiàn)

18、愛心,向?yàn)?zāi)區(qū)獻(xiàn)愛心, 捐出了五月份全部銷售利潤(rùn)已知該公司五月份只售捐出了五月份全部銷售利潤(rùn)已知該公司五月份只售 出甲、乙、丙三種型號(hào)器材若干臺(tái),每種型號(hào)器材不出甲、乙、丙三種型號(hào)器材若干臺(tái),每種型號(hào)器材不 少于少于8 8臺(tái),五月份支出包括這批器材進(jìn)貨款臺(tái),五月份支出包括這批器材進(jìn)貨款6464萬(wàn)元和萬(wàn)元和 其他各項(xiàng)支出(含人員工資和雜項(xiàng)開支)其他各項(xiàng)支出(含人員工資和雜項(xiàng)開支)3.83.8萬(wàn)元萬(wàn)元. .這這 三種器材的進(jìn)價(jià)和售三種器材的進(jìn)價(jià)和售 價(jià)如下表,人員工價(jià)如下表,人員工 資資y y1 1( (萬(wàn)元萬(wàn)元) )和雜項(xiàng)和雜項(xiàng) 支出支出y y2 2(萬(wàn)元)分(萬(wàn)元)分 別與總銷售量別與總銷售量x

19、 x(臺(tái))(臺(tái)) 成一次函數(shù)關(guān)系成一次函數(shù)關(guān)系( (如如 圖圖).). 求求y y1 1與與x x的函數(shù)解析式;的函數(shù)解析式; 求五月份該公司的總銷售量;求五月份該公司的總銷售量; 設(shè)公司五月份售出甲種型號(hào)器材設(shè)公司五月份售出甲種型號(hào)器材t t臺(tái),五月份總銷臺(tái),五月份總銷 售利潤(rùn)為售利潤(rùn)為WW(萬(wàn)元),求(萬(wàn)元),求WW與與t t的函數(shù)關(guān)系式;(銷的函數(shù)關(guān)系式;(銷 售利潤(rùn)銷售額進(jìn)價(jià)其他各項(xiàng)支出)售利潤(rùn)銷售額進(jìn)價(jià)其他各項(xiàng)支出) 請(qǐng)推測(cè)該公司這次向?yàn)?zāi)區(qū)捐款金額的最大值請(qǐng)推測(cè)該公司這次向?yàn)?zāi)區(qū)捐款金額的最大值. . 求二次函數(shù)的解析式,并在給定的直角坐標(biāo)系中求二次函數(shù)的解析式,并在給定的直角坐標(biāo)系中

20、 作出這個(gè)函數(shù)的圖像;(作出這個(gè)函數(shù)的圖像;(5 5分)分) 評(píng):函數(shù)的應(yīng)用是學(xué)習(xí)函數(shù)的根本,尤其是把評(píng):函數(shù)的應(yīng)用是學(xué)習(xí)函數(shù)的根本,尤其是把 函數(shù)應(yīng)用到生活中去,使函數(shù)的學(xué)習(xí)更有意義。函數(shù)應(yīng)用到生活中去,使函數(shù)的學(xué)習(xí)更有意義。 6 6考查函數(shù)的應(yīng)用(考查函數(shù)的應(yīng)用(2 2)幾何應(yīng)用)幾何應(yīng)用 例1(20082008年龍巖市)年龍巖市)如圖,在平面直角坐標(biāo)系xOy 中,O交x軸于A、B兩點(diǎn),直線FAx軸于點(diǎn)A,點(diǎn)D 在FA上,且DO平行O的弦MB,連DM并延長(zhǎng)交x軸于 點(diǎn)C. 判斷直線判斷直線DCDC與與OO的位置關(guān)的位置關(guān) 系,并給出證明;系,并給出證明; 設(shè)點(diǎn)設(shè)點(diǎn)D D的坐標(biāo)為(的坐標(biāo)為(

21、-2-2,4 4),), 試求試求MCMC的長(zhǎng)及直線的長(zhǎng)及直線DCDC的解析的解析 式式. . 判斷判斷ABMABM的形狀,并說明理由。的形狀,并說明理由。 當(dāng)頂點(diǎn)當(dāng)頂點(diǎn)MM的坐標(biāo)為(的坐標(biāo)為(2 2,1 1)時(shí),求拋物線)時(shí),求拋物線 的解析式,并畫出該拋物線的大致圖形。的解析式,并畫出該拋物線的大致圖形。 若平行于軸的直線與拋物線交于若平行于軸的直線與拋物線交于C C、D D兩點(diǎn),以兩點(diǎn),以 CDCD為直徑的圓恰好與軸相切,求該圓的圓心坐標(biāo)。為直徑的圓恰好與軸相切,求該圓的圓心坐標(biāo)。 評(píng):函數(shù)的幾何應(yīng)用真正體現(xiàn)了數(shù)形結(jié)合,評(píng):函數(shù)的幾何應(yīng)用真正體現(xiàn)了數(shù)形結(jié)合, 是代數(shù)與幾何最完美的結(jié)合。是

22、代數(shù)與幾何最完美的結(jié)合。 7 7考查函數(shù)的應(yīng)用(考查函數(shù)的應(yīng)用(3 3)函數(shù)與運(yùn)動(dòng))函數(shù)與運(yùn)動(dòng) 寫出直線寫出直線BCBC的解析式的解析式 求求ABCABC的面積的面積 若點(diǎn)若點(diǎn)MM在線段上以每秒在線段上以每秒1 1個(gè)單位長(zhǎng)度的速度從個(gè)單位長(zhǎng)度的速度從A A向向 B B運(yùn)動(dòng)(不與運(yùn)動(dòng)(不與A,BA,B重合),同時(shí),點(diǎn)重合),同時(shí),點(diǎn)NN在射線在射線BCBC上以上以 每秒每秒2 2個(gè)單位長(zhǎng)度的速度從個(gè)單位長(zhǎng)度的速度從B B向向C C運(yùn)動(dòng)設(shè)運(yùn)動(dòng)時(shí)間運(yùn)動(dòng)設(shè)運(yùn)動(dòng)時(shí)間 為為t t秒,請(qǐng)寫出秒,請(qǐng)寫出MNBMNB的面積的面積s s與與t t的函數(shù)關(guān)系式,的函數(shù)關(guān)系式, 并求出點(diǎn)并求出點(diǎn)MM運(yùn)動(dòng)多少時(shí)間時(shí),運(yùn)

23、動(dòng)多少時(shí)間時(shí), MNBMNB的面積最大,的面積最大, 最大面積是多少?最大面積是多少? 評(píng):函數(shù)與運(yùn)動(dòng)的評(píng):函數(shù)與運(yùn)動(dòng)的 題型很多,這是當(dāng)題型很多,這是當(dāng) 今數(shù)學(xué)學(xué)習(xí)最時(shí)髦今數(shù)學(xué)學(xué)習(xí)最時(shí)髦 的考試方向。的考試方向。 8 8考查函數(shù)的應(yīng)用(考查函數(shù)的應(yīng)用(4 4)函數(shù)與建模)函數(shù)與建模 例1:(08茂名)我市某工藝廠為配合北京奧運(yùn),設(shè) 計(jì)了一款成本為20元件的工藝品投放市場(chǎng)進(jìn)行試 銷經(jīng)過調(diào)查,得到如下數(shù)據(jù): (1 1)把上表中)把上表中x x、y y的各組對(duì)應(yīng)值作為點(diǎn)的坐標(biāo),在的各組對(duì)應(yīng)值作為點(diǎn)的坐標(biāo),在 下面的平面直角坐標(biāo)系中描出相應(yīng)的點(diǎn),猜想下面的平面直角坐標(biāo)系中描出相應(yīng)的點(diǎn),猜想y y與與

24、x x 的函數(shù)關(guān)系,并求出函數(shù)關(guān)系式;的函數(shù)關(guān)系,并求出函數(shù)關(guān)系式; (2 2)當(dāng)銷售單價(jià)定為多少時(shí),工藝廠試銷該工藝品)當(dāng)銷售單價(jià)定為多少時(shí),工藝廠試銷該工藝品 每天獲得的利潤(rùn)最大?最大利潤(rùn)是多少?(利潤(rùn)每天獲得的利潤(rùn)最大?最大利潤(rùn)是多少?(利潤(rùn)= 銷售總價(jià)銷售總價(jià)- -成本總價(jià))成本總價(jià)) (3 3)當(dāng)?shù)匚飪r(jià)部門規(guī)定,該工藝品銷售單價(jià)最高)當(dāng)?shù)匚飪r(jià)部門規(guī)定,該工藝品銷售單價(jià)最高 不能超過不能超過4545元元/ /件,那么銷售單價(jià)定為多少時(shí),工件,那么銷售單價(jià)定為多少時(shí),工 藝廠試銷該工藝品每天獲得的利潤(rùn)最大?藝廠試銷該工藝品每天獲得的利潤(rùn)最大? 例2:(20082008年揚(yáng)州市年揚(yáng)州市)

25、)紅星公司生產(chǎn)的某種時(shí)令商品每 件成本為20元,經(jīng)過市場(chǎng)調(diào)研發(fā)現(xiàn),這種商品在未來(lái) 40天內(nèi)的日銷售量m(件)與時(shí)間t(天)的關(guān)系如下 表: 時(shí)間t(天)1361036 日銷售量m(件)9490847624 下面我們就來(lái)研究銷售這種商品的有關(guān)問題:下面我們就來(lái)研究銷售這種商品的有關(guān)問題: (1 1)認(rèn)真分析上表中的數(shù)據(jù),用所學(xué)過的一次函數(shù)、二次)認(rèn)真分析上表中的數(shù)據(jù),用所學(xué)過的一次函數(shù)、二次 函數(shù)、反比例函數(shù)的知識(shí)確定一個(gè)滿足這些數(shù)據(jù)的函數(shù)、反比例函數(shù)的知識(shí)確定一個(gè)滿足這些數(shù)據(jù)的mm(件)(件) 與與t t(天)之間的關(guān)系式;(天)之間的關(guān)系式; (2 2)請(qǐng)預(yù)測(cè)未來(lái))請(qǐng)預(yù)測(cè)未來(lái)4040天中哪一

26、天的日銷售利潤(rùn)最大,最大天中哪一天的日銷售利潤(rùn)最大,最大 日銷售利潤(rùn)是多少?日銷售利潤(rùn)是多少? (3 3)在實(shí)際銷售的前)在實(shí)際銷售的前2020天中,該公司決定每銷售一件商天中,該公司決定每銷售一件商 品就捐贈(zèng)品就捐贈(zèng)a a元利潤(rùn)(元利潤(rùn)(a4ak0)0),第,第 (1)(1)題題中得到的結(jié)論哪些成立,哪些不成立?若成中得到的結(jié)論哪些成立,哪些不成立?若成 立,以圖立,以圖5 5為例簡(jiǎn)要說明理由為例簡(jiǎn)要說明理由 例5(1)在方格紙(每個(gè)小方格都是邊長(zhǎng)為1個(gè)單位 長(zhǎng)度的正方形)中,我們把每個(gè)小正方形的頂點(diǎn)稱 為格點(diǎn),以格點(diǎn)為頂點(diǎn)的圖形稱為格點(diǎn)圖形如上 圖中的ABC稱為格點(diǎn)ABC現(xiàn)將圖中ABC繞點(diǎn)

27、A 順時(shí)針旋轉(zhuǎn)1800,并將其邊長(zhǎng)擴(kuò)大為原來(lái)的2倍,則 變形后點(diǎn)B的對(duì)應(yīng)點(diǎn)所在的位置是( ) A A甲甲 B B乙乙 C C丙丙 D D丁丁 (2)如圖,已知ABC的頂點(diǎn)B的坐標(biāo)是(2,1),將 ABC向左平移兩個(gè)單位后,點(diǎn)B平移到B1,則B1 的坐標(biāo)是( ) A A(4(4, 1) 1) B B(0(0,1) 1) C C( (1 1,1) 1) D D(1 (1,0)0) (3)(3)如圖,將如圖,將PQRPQR向右平移向右平移2 2個(gè)單位長(zhǎng)度,再向下個(gè)單位長(zhǎng)度,再向下 平移平移3 3個(gè)單位長(zhǎng)度,則頂點(diǎn)個(gè)單位長(zhǎng)度,則頂點(diǎn)P P平移后的坐標(biāo)是平移后的坐標(biāo)是( )( ) A A(-2,-4)

28、(-2,-4) B B(-2,4) (-2,4) C C(2,-3) (2,-3) D D(-1,-3) (-1,-3) 評(píng):這里的運(yùn)動(dòng)有平移、翻折、旋轉(zhuǎn),甚至還評(píng):這里的運(yùn)動(dòng)有平移、翻折、旋轉(zhuǎn),甚至還 有格點(diǎn)運(yùn)動(dòng),但在運(yùn)動(dòng)過程中要追求變與不變有格點(diǎn)運(yùn)動(dòng),但在運(yùn)動(dòng)過程中要追求變與不變 之間的關(guān)系是解決問題的根本。之間的關(guān)系是解決問題的根本。 (二)圖形與運(yùn)動(dòng)(二)圖形與運(yùn)動(dòng)(1 1)點(diǎn)動(dòng))點(diǎn)動(dòng) 例例1 1(沈陽(yáng))如圖所示,在平面直角坐標(biāo)系中,矩形(沈陽(yáng))如圖所示,在平面直角坐標(biāo)系中,矩形 ABOCABOC的邊的邊BOBO在在x x軸的負(fù)半軸上,邊軸的負(fù)半軸上,邊OCOC在在y y軸的正半軸軸的

29、正半軸 上,且上,且AB=1AB=1,OB= OB= ,矩形,矩形ABOCABOC繞點(diǎn)繞點(diǎn)O O按順時(shí)針方向按順時(shí)針方向 旋轉(zhuǎn)旋轉(zhuǎn)600600后得到矩形后得到矩形EFODEFOD點(diǎn)點(diǎn)A A的對(duì)應(yīng)點(diǎn)為點(diǎn)的對(duì)應(yīng)點(diǎn)為點(diǎn)E E,點(diǎn),點(diǎn)B B 的對(duì)應(yīng)點(diǎn)為點(diǎn)的對(duì)應(yīng)點(diǎn)為點(diǎn)F F,點(diǎn),點(diǎn)C C的對(duì)應(yīng)點(diǎn)為點(diǎn)的對(duì)應(yīng)點(diǎn)為點(diǎn)D D, 拋物線拋物線y=axy=ax2 2+bx+c+bx+c過點(diǎn)過點(diǎn)A A,E E,D D 3 (1 1)判斷點(diǎn))判斷點(diǎn)E E是否在是否在y y軸軸 上,并說明理由;上,并說明理由; (2 2)求拋物線的函數(shù)表)求拋物線的函數(shù)表 達(dá)式;達(dá)式; (3 3)在)在x x軸的上方是否存在點(diǎn)軸的上方是

30、否存在點(diǎn)P P, 點(diǎn)點(diǎn)QQ,使以點(diǎn),使以點(diǎn)OO,B B,P P,QQ為為 頂點(diǎn)的平行四邊形的面積是頂點(diǎn)的平行四邊形的面積是 矩形矩形ABOCABOC面積的面積的2 2倍,且倍,且 點(diǎn)點(diǎn)P P在拋物線上,若存在,在拋物線上,若存在, 請(qǐng)求出點(diǎn)請(qǐng)求出點(diǎn)P P,點(diǎn),點(diǎn)QQ的坐標(biāo);若不存在,請(qǐng)說明理由的坐標(biāo);若不存在,請(qǐng)說明理由 例例2 2(仙桃)如圖,直角梯形(仙桃)如圖,直角梯形OABCOABC中,中,ABCD,OABCD,O為坐為坐 標(biāo)原點(diǎn),點(diǎn)標(biāo)原點(diǎn),點(diǎn)A A在在y y軸正半軸上,點(diǎn)軸正半軸上,點(diǎn)C C在在x x軸正半軸上,點(diǎn)軸正半軸上,點(diǎn) B B坐標(biāo)為(坐標(biāo)為(2 2,2 2 ),),BCO=

31、 60BCO= 60,OHBCOHBC于點(diǎn)于點(diǎn)H.H.動(dòng)動(dòng) 點(diǎn)點(diǎn)P P從點(diǎn)從點(diǎn)H H出發(fā),沿線段出發(fā),沿線段HOHO向點(diǎn)向點(diǎn)O O運(yùn)動(dòng),動(dòng)點(diǎn)運(yùn)動(dòng),動(dòng)點(diǎn)Q Q從點(diǎn)從點(diǎn)O O出出 發(fā),沿線段發(fā),沿線段OAOA向點(diǎn)向點(diǎn)A A運(yùn)動(dòng),兩點(diǎn)同時(shí)出發(fā),速度都為運(yùn)動(dòng),兩點(diǎn)同時(shí)出發(fā),速度都為 每秒每秒1 1個(gè)單位長(zhǎng)度個(gè)單位長(zhǎng)度. .設(shè)點(diǎn)設(shè)點(diǎn)P P運(yùn)動(dòng)的時(shí)間為運(yùn)動(dòng)的時(shí)間為t t秒秒. . 3 (1 1)求)求OHOH的長(zhǎng);的長(zhǎng); (2 2)若)若OPQOPQ的面積為的面積為S S(平方(平方 單位)單位). . 求求S S與與t t之間的函數(shù)關(guān)系式之間的函數(shù)關(guān)系式. . 并求為何值時(shí),并求為何值時(shí),OPQOPQ的

32、面積最的面積最 大,最大值是多少?大,最大值是多少? (3 3)設(shè))設(shè)PQPQ與與OBOB交于點(diǎn)交于點(diǎn)M.M. 當(dāng)當(dāng)OPMOPM為等腰三角形時(shí),求(為等腰三角形時(shí),求(2 2)中)中S S的值的值. . 探究線段探究線段OMOM長(zhǎng)度的最大值是多少,直接寫出結(jié)論長(zhǎng)度的最大值是多少,直接寫出結(jié)論. . 評(píng):點(diǎn)的運(yùn)動(dòng)是很豐富的,有的沒有速度評(píng):點(diǎn)的運(yùn)動(dòng)是很豐富的,有的沒有速度 有的有速度和時(shí)間等,還會(huì)與存在性有很大關(guān)系。有的有速度和時(shí)間等,還會(huì)與存在性有很大關(guān)系。 (三)圖形與運(yùn)動(dòng)(三)圖形與運(yùn)動(dòng)(2 2)線動(dòng))線動(dòng) 【操作】將三角板DEF的直角頂點(diǎn)E放置于三角板ABC 的斜邊AC上,再將三角板DE

33、F繞點(diǎn)E旋轉(zhuǎn),并使邊DE與 邊AB交于點(diǎn)P,邊EF與邊BC于點(diǎn)Q 【探究一】在旋轉(zhuǎn)過程中, 【探究二】【探究二】若,若,ACAC30cm30cm,連續(xù),連續(xù)PQPQ,設(shè),設(shè)EPQEPQ的面的面 積為積為S(cmS(cm2 2) ),在旋轉(zhuǎn)過程中:,在旋轉(zhuǎn)過程中: (1)S(1)S是否存在最大值或最小值?若存在,求出最大是否存在最大值或最小值?若存在,求出最大 值或最小值,若不存在,說明理由值或最小值,若不存在,說明理由. . (2)(2)隨著隨著S S取不同的值,對(duì)應(yīng)取不同的值,對(duì)應(yīng)EPQEPQ的個(gè)數(shù)有哪些變的個(gè)數(shù)有哪些變 化?不出相應(yīng)化?不出相應(yīng)S S值的取值范圍值的取值范圍. . 評(píng):線動(dòng)

34、使運(yùn)動(dòng)變得略顯復(fù)雜,但我們要能從中評(píng):線動(dòng)使運(yùn)動(dòng)變得略顯復(fù)雜,但我們要能從中 找到最為本質(zhì)的東西找到最為本質(zhì)的東西,這是解決這類問題的關(guān)鍵。這是解決這類問題的關(guān)鍵。 (四)圖形與運(yùn)動(dòng)(四)圖形與運(yùn)動(dòng)(3 3)面動(dòng))面動(dòng) ( (遼寧遼寧) )如圖在如圖在RtABCRtABC中,中,A=900,AB=AC,BC=4 A=900,AB=AC,BC=4 , 另有一等腰梯形另有一等腰梯形DEFGDEFG(GFDEGFDE)的底邊)的底邊DEDE與與BCBC重合,重合, 兩腰分別落在兩腰分別落在AB,ACAB,AC上,且上,且G,FG,F分別是分別是AB,ACAB,AC的中點(diǎn)的中點(diǎn) 2 (1 1)求等腰梯

35、形)求等腰梯形DEFGDEFG的面積;的面積; (2 2)操作:固定)操作:固定ABCABC,將等腰梯形,將等腰梯形DEFGDEFG以每秒以每秒1 1 個(gè)單位的速度沿個(gè)單位的速度沿BCBC方向向右運(yùn)動(dòng),直到點(diǎn)方向向右運(yùn)動(dòng),直到點(diǎn)D D與點(diǎn)與點(diǎn)C C重重 合時(shí)停止設(shè)運(yùn)動(dòng)時(shí)間為合時(shí)停止設(shè)運(yùn)動(dòng)時(shí)間為x x秒,運(yùn)動(dòng)后的等腰梯形為秒,運(yùn)動(dòng)后的等腰梯形為 DEFGDEFG(如圖(如圖2 2)探究)探究1 1:在運(yùn)動(dòng)過程中,四邊:在運(yùn)動(dòng)過程中,四邊 形形BDGGBDGG能否是菱形?若能,請(qǐng)求出此時(shí)能否是菱形?若能,請(qǐng)求出此時(shí)x x的值;的值; 若不能,請(qǐng)說明理由探究若不能,請(qǐng)說明理由探究2 2:設(shè)在運(yùn)動(dòng)過程

36、中:設(shè)在運(yùn)動(dòng)過程中 ABCABC與等腰梯形與等腰梯形DEFGDEFG重疊部分的面積為重疊部分的面積為y y,求,求y y與與 x x的函數(shù)關(guān)系式的函數(shù)關(guān)系式 評(píng):面動(dòng)即為圖形的整體運(yùn)動(dòng),但它的實(shí)質(zhì)評(píng):面動(dòng)即為圖形的整體運(yùn)動(dòng),但它的實(shí)質(zhì) 卻是點(diǎn)和線的運(yùn)動(dòng)的和。卻是點(diǎn)和線的運(yùn)動(dòng)的和。 注重基礎(chǔ)知識(shí)、基本技能的考查,加強(qiáng)對(duì)數(shù)學(xué)核注重基礎(chǔ)知識(shí)、基本技能的考查,加強(qiáng)對(duì)數(shù)學(xué)核 心觀念、內(nèi)容、思想方法的考查,例如轉(zhuǎn)化和化歸思心觀念、內(nèi)容、思想方法的考查,例如轉(zhuǎn)化和化歸思 想,函數(shù)與方程思想,數(shù)形結(jié)合思想,分類討論思想想,函數(shù)與方程思想,數(shù)形結(jié)合思想,分類討論思想 是中考中必考的數(shù)學(xué)思想方法。關(guān)注考查學(xué)生對(duì)觀

37、察、是中考中必考的數(shù)學(xué)思想方法。關(guān)注考查學(xué)生對(duì)觀察、 發(fā)現(xiàn)、猜測(cè)、論證的數(shù)學(xué)思維方式的運(yùn)用和探究能力。發(fā)現(xiàn)、猜測(cè)、論證的數(shù)學(xué)思維方式的運(yùn)用和探究能力。 數(shù)學(xué)的角度發(fā)現(xiàn)和提出問題并用數(shù)學(xué)方法加以探索、數(shù)學(xué)的角度發(fā)現(xiàn)和提出問題并用數(shù)學(xué)方法加以探索、 研究和初步學(xué)會(huì)運(yùn)用數(shù)學(xué)的思維去觀察??疾閷W(xué)生從研究和初步學(xué)會(huì)運(yùn)用數(shù)學(xué)的思維去觀察。考查學(xué)生從 文字、圖像、數(shù)據(jù)中獲取信息和處理信息的能力以及文字、圖像、數(shù)據(jù)中獲取信息和處理信息的能力以及 對(duì)題型的發(fā)現(xiàn)、猜測(cè)和探究的數(shù)學(xué)素質(zhì)。對(duì)題型的發(fā)現(xiàn)、猜測(cè)和探究的數(shù)學(xué)素質(zhì)。 一、注重對(duì)數(shù)學(xué)核心內(nèi)容的考核一、注重對(duì)數(shù)學(xué)核心內(nèi)容的考核 例例3 3(20082008恩施自

38、治州)如圖恩施自治州)如圖,C,C為線段為線段BDBD上一動(dòng)點(diǎn)上一動(dòng)點(diǎn), , 分別過點(diǎn)分別過點(diǎn)B B、D D作作ABBD,EDBD,ABBD,EDBD,連接連接ACAC、EC.EC.已知已知 AB=5,DE=1,BD=8,AB=5,DE=1,BD=8,設(shè)設(shè)CD=x.CD=x. (1)(1)用含用含x x的代數(shù)式表示的代數(shù)式表示ACACCECE的長(zhǎng);的長(zhǎng); (2)(2)請(qǐng)問點(diǎn)請(qǐng)問點(diǎn)C C滿足什么條件時(shí)滿足什么條件時(shí),AC,ACCECE的值最小的值最小? ? (3)(3)根據(jù)根據(jù)(2)(2)中的規(guī)律和結(jié)論中的規(guī)律和結(jié)論, ,請(qǐng)構(gòu)圖求出代數(shù)式請(qǐng)構(gòu)圖求出代數(shù)式 的最小值的最小值. . 22 4(12)

39、9xx 數(shù)學(xué)學(xué)習(xí)無(wú)論是內(nèi)容還是方法都要重視數(shù)學(xué)學(xué)習(xí)無(wú)論是內(nèi)容還是方法都要重視“實(shí)驗(yàn)實(shí)驗(yàn)” 的作用,要改變以往數(shù)學(xué)學(xué)習(xí)過分依賴模仿與記憶的作用,要改變以往數(shù)學(xué)學(xué)習(xí)過分依賴模仿與記憶 的學(xué)習(xí)方式,在的學(xué)習(xí)方式,在“實(shí)驗(yàn)操作實(shí)驗(yàn)操作”中使學(xué)習(xí)活動(dòng)成為一中使學(xué)習(xí)活動(dòng)成為一 個(gè)生動(dòng)活潑、主動(dòng)并富有個(gè)性的過程。個(gè)生動(dòng)活潑、主動(dòng)并富有個(gè)性的過程。20082008年不少年不少 地區(qū)的中考試題都在地區(qū)的中考試題都在“實(shí)驗(yàn)操作實(shí)驗(yàn)操作”上增強(qiáng)了考查的上增強(qiáng)了考查的 力度,這樣做的目的不但有助于學(xué)生實(shí)踐能力和創(chuàng)力度,這樣做的目的不但有助于學(xué)生實(shí)踐能力和創(chuàng) 新精神的培養(yǎng),更有助于學(xué)生養(yǎng)成實(shí)驗(yàn)探索的習(xí)慣。新精神的培養(yǎng),

40、更有助于學(xué)生養(yǎng)成實(shí)驗(yàn)探索的習(xí)慣。 二、注重對(duì)學(xué)生二、注重對(duì)學(xué)生“做數(shù)學(xué)做數(shù)學(xué)”能力的考查能力的考查 例例1(20081(2008年安徽省年安徽省) ) 如圖,在平面直角坐標(biāo)系中,如圖,在平面直角坐標(biāo)系中, 一顆棋子從點(diǎn)一顆棋子從點(diǎn)P P處開始依次關(guān)于點(diǎn)處開始依次關(guān)于點(diǎn)A A、B B、C C作循環(huán)對(duì)作循環(huán)對(duì) 稱跳動(dòng),即第一次跳到點(diǎn)稱跳動(dòng),即第一次跳到點(diǎn)P P關(guān)于點(diǎn)關(guān)于點(diǎn)A A的對(duì)稱點(diǎn)的對(duì)稱點(diǎn)M M處,處, 接著跳到點(diǎn)接著跳到點(diǎn)M M關(guān)于點(diǎn)關(guān)于點(diǎn)B B的對(duì)稱點(diǎn)的對(duì)稱點(diǎn)N N處,第三次再跳到處,第三次再跳到 點(diǎn)點(diǎn)N N關(guān)于關(guān)于C C的對(duì)稱點(diǎn)處,的對(duì)稱點(diǎn)處,如此下去。如此下去。 (1 1)在圖中畫出點(diǎn)

41、)在圖中畫出點(diǎn)MM、 NN,并寫出點(diǎn),并寫出點(diǎn)MM、NN 的坐標(biāo):的坐標(biāo): _ (2 2)求經(jīng)過第)求經(jīng)過第20082008 次跳動(dòng)之后,棋子落次跳動(dòng)之后,棋子落 點(diǎn)與點(diǎn)點(diǎn)與點(diǎn)P P的距離。的距離。 (2 2)觀察表格中方程兩個(gè)解的和、兩個(gè)解的積與原)觀察表格中方程兩個(gè)解的和、兩個(gè)解的積與原 方程的系數(shù)之間的關(guān)系有什么規(guī)律方程的系數(shù)之間的關(guān)系有什么規(guī)律? ?寫出你的結(jié)論寫出你的結(jié)論. . 三、注重?cái)?shù)學(xué)與學(xué)生生活實(shí)際的聯(lián)系,與現(xiàn)代三、注重?cái)?shù)學(xué)與學(xué)生生活實(shí)際的聯(lián)系,與現(xiàn)代 社會(huì)和科技發(fā)展的聯(lián)系,注意體現(xiàn)積極的價(jià)值社會(huì)和科技發(fā)展的聯(lián)系,注意體現(xiàn)積極的價(jià)值 取向,注意結(jié)合當(dāng)今社會(huì)熱點(diǎn)、焦點(diǎn)問題體現(xiàn)取向

42、,注意結(jié)合當(dāng)今社會(huì)熱點(diǎn)、焦點(diǎn)問題體現(xiàn) 教育性、時(shí)代性和地域特點(diǎn)。教育性、時(shí)代性和地域特點(diǎn)。 各地的試卷出現(xiàn)了許多源于生活,具有親和力各地的試卷出現(xiàn)了許多源于生活,具有親和力 的試題。這些題目力求貼近學(xué)生的生活,選取學(xué)生的試題。這些題目力求貼近學(xué)生的生活,選取學(xué)生 俯拾即是的素材,讓學(xué)生感到現(xiàn)實(shí)生活中充滿了數(shù)俯拾即是的素材,讓學(xué)生感到現(xiàn)實(shí)生活中充滿了數(shù) 學(xué),并要求活學(xué)活用數(shù)學(xué)知識(shí)解決實(shí)際問題,較為學(xué),并要求活學(xué)活用數(shù)學(xué)知識(shí)解決實(shí)際問題,較為 有效地考查了學(xué)生應(yīng)用數(shù)學(xué)知識(shí)解決實(shí)際問題的能有效地考查了學(xué)生應(yīng)用數(shù)學(xué)知識(shí)解決實(shí)際問題的能 力。密切聯(lián)系實(shí)際,使學(xué)生可以運(yùn)用數(shù)學(xué)的思維方力。密切聯(lián)系實(shí)際,使學(xué)

43、生可以運(yùn)用數(shù)學(xué)的思維方 式觀察、分析、解決生活和學(xué)習(xí)中的問題。式觀察、分析、解決生活和學(xué)習(xí)中的問題。 例例1(081(08年寧夏回族自治區(qū)年寧夏回族自治區(qū)) )商場(chǎng)為了促銷,推出兩種促商場(chǎng)為了促銷,推出兩種促 銷方式:銷方式: 方式方式:所有商品打:所有商品打7.57.5折銷售:折銷售: 方式方式:一次購(gòu)物滿:一次購(gòu)物滿200200元送元送6060元現(xiàn)金元現(xiàn)金 (1 1)楊老師要購(gòu)買標(biāo)價(jià)為)楊老師要購(gòu)買標(biāo)價(jià)為628628元和元和788788元的商品各一件,元的商品各一件, 現(xiàn)有四種購(gòu)買方案:現(xiàn)有四種購(gòu)買方案: 方案一:方案一:628628元和元和788788元的商品均按促銷方式元的商品均按促銷

44、方式購(gòu)買;購(gòu)買; 方案二:方案二:628628元的商品按促銷方式元的商品按促銷方式購(gòu)買,購(gòu)買,788788元的商元的商 品按促銷方式品按促銷方式購(gòu)買;購(gòu)買; 方案三:方案三:628628元的商品按促銷方式元的商品按促銷方式購(gòu)買,購(gòu)買,788788元的商元的商 品按促銷方式品按促銷方式購(gòu)買;購(gòu)買; 方案四:方案四:628628元和元和788788元的商品均按促銷方式元的商品均按促銷方式購(gòu)買購(gòu)買 你給楊老師提出的最合理購(gòu)買方案是你給楊老師提出的最合理購(gòu)買方案是 (2 2)通過計(jì)算下表中標(biāo)價(jià)在)通過計(jì)算下表中標(biāo)價(jià)在600600元到元到800800元之間商元之間商 品的付款金額,你總結(jié)出商品的購(gòu)買規(guī)律

45、品的付款金額,你總結(jié)出商品的購(gòu)買規(guī)律 是是 。 例例2 2(20082008年聊城市)隨地震波而來(lái)的是地底積蓄已年聊城市)隨地震波而來(lái)的是地底積蓄已 久的能量因?yàn)槔锸险鸺?jí)并不像攝氏溫度一樣是等分久的能量因?yàn)槔锸险鸺?jí)并不像攝氏溫度一樣是等分 性的指標(biāo),因此每?jī)杉?jí)地震所釋放的能量也相差巨性的指標(biāo),因此每?jī)杉?jí)地震所釋放的能量也相差巨 大根據(jù)里克特在大根據(jù)里克特在19531953年提出的公式計(jì)算,每一級(jí)地年提出的公式計(jì)算,每一級(jí)地 震釋放的能量都是次一級(jí)地震的震釋放的能量都是次一級(jí)地震的 倍這意味著,倍這意味著, 里氏震級(jí)每高出里氏震級(jí)每高出0.10.1級(jí),就會(huì)多釋放出級(jí),就會(huì)多釋放出0.41250.

46、4125倍的能倍的能 量(如量(如7.87.8級(jí)比級(jí)比7.77.7級(jí)會(huì)多釋放出級(jí)會(huì)多釋放出0.41250.4125倍的能倍的能 量)那么量)那么5 5月月1212日下午日下午2 2時(shí)時(shí)2828分四川汶川地區(qū)發(fā)生的分四川汶川地區(qū)發(fā)生的 8.08.0級(jí)大地震與級(jí)大地震與5 5月月2525日下午日下午4 4時(shí)時(shí)2121分四川青川一帶發(fā)分四川青川一帶發(fā) 生的生的6.46.4級(jí)余震相比,前次所釋放的能量約是后次的級(jí)余震相比,前次所釋放的能量約是后次的 ( ) A A2222倍倍 B B3434倍倍 C C4040倍倍 D D251251倍倍 1000 例例3 3(20082008年聊城市)年聊城市)12

47、12如圖是某廣場(chǎng)用地板鋪設(shè)如圖是某廣場(chǎng)用地板鋪設(shè) 的部分圖案,中央是一塊正六邊形的地板磚,周圍的部分圖案,中央是一塊正六邊形的地板磚,周圍 是正三角形和正方形的地板磚從里向外的第是正三角形和正方形的地板磚從里向外的第1 1層包層包 括括6 6個(gè)正方形和個(gè)正方形和6 6個(gè)正三角形,第個(gè)正三角形,第2 2層包括層包括6 6個(gè)正方形個(gè)正方形 和和1818個(gè)正三角形,依此遞推,第個(gè)正三角形,依此遞推,第8 8層中含有正三角形層中含有正三角形 個(gè)數(shù)是(個(gè)數(shù)是( ) A A5454個(gè)個(gè)B B9090個(gè)個(gè) C C102102個(gè)個(gè)D D114114個(gè)個(gè) 四、強(qiáng)調(diào)能力立意,重視對(duì)學(xué)生運(yùn)用所學(xué)四、強(qiáng)調(diào)能力立意,重

48、視對(duì)學(xué)生運(yùn)用所學(xué) 的基礎(chǔ)知識(shí)和技能分析問題、解決問題能的基礎(chǔ)知識(shí)和技能分析問題、解決問題能 力的考查。力的考查。 課程標(biāo)準(zhǔn)課程標(biāo)準(zhǔn)提出,要重視對(duì)學(xué)生發(fā)現(xiàn)問題和提出,要重視對(duì)學(xué)生發(fā)現(xiàn)問題和 解決問題的能力的評(píng)價(jià)。為實(shí)現(xiàn)這一理念,各地試解決問題的能力的評(píng)價(jià)。為實(shí)現(xiàn)這一理念,各地試 卷中出現(xiàn)了很多通過讓學(xué)生經(jīng)歷某種形式的數(shù)學(xué)活卷中出現(xiàn)了很多通過讓學(xué)生經(jīng)歷某種形式的數(shù)學(xué)活 動(dòng),在活動(dòng)過程中發(fā)現(xiàn)問題,提出問題,進(jìn)而解決動(dòng),在活動(dòng)過程中發(fā)現(xiàn)問題,提出問題,進(jìn)而解決 問題的題目。注意對(duì)學(xué)生創(chuàng)新精神和實(shí)踐能力的考問題的題目。注意對(duì)學(xué)生創(chuàng)新精神和實(shí)踐能力的考 查。試題體現(xiàn)開放性、探究性、綜合性和實(shí)踐性特查。試題

49、體現(xiàn)開放性、探究性、綜合性和實(shí)踐性特 點(diǎn),便于學(xué)生創(chuàng)造性地發(fā)揮。這些題目較好地考查點(diǎn),便于學(xué)生創(chuàng)造性地發(fā)揮。這些題目較好地考查 了學(xué)生通過觀察、實(shí)驗(yàn)、歸納和類比等活動(dòng)獲得數(shù)了學(xué)生通過觀察、實(shí)驗(yàn)、歸納和類比等活動(dòng)獲得數(shù) 學(xué)猜想,并借助某種方式證明猜想合理性的數(shù)學(xué)能學(xué)猜想,并借助某種方式證明猜想合理性的數(shù)學(xué)能 力。培養(yǎng)學(xué)生從文字、圖像、數(shù)據(jù)中獲取信息和處力。培養(yǎng)學(xué)生從文字、圖像、數(shù)據(jù)中獲取信息和處 理信息的能力,是新一輪課改特別強(qiáng)調(diào)的能力,中理信息的能力,是新一輪課改特別強(qiáng)調(diào)的能力,中 考出現(xiàn)了圖像信息題、表格信息題,以及統(tǒng)計(jì)概率考出現(xiàn)了圖像信息題、表格信息題,以及統(tǒng)計(jì)概率 方面的題目,較好地實(shí)現(xiàn)

50、了對(duì)這方面能力的考查。方面的題目,較好地實(shí)現(xiàn)了對(duì)這方面能力的考查。 試卷中通過精心設(shè)置情景,讓學(xué)生通過觀察和動(dòng)手試卷中通過精心設(shè)置情景,讓學(xué)生通過觀察和動(dòng)手 操作等活動(dòng),在圖形變換等過程中考查學(xué)生空間觀操作等活動(dòng),在圖形變換等過程中考查學(xué)生空間觀 念和推理能力,較好地落實(shí)了念和推理能力,較好地落實(shí)了課程標(biāo)準(zhǔn)課程標(biāo)準(zhǔn)之發(fā)展之發(fā)展 學(xué)生空間觀念和推理與論證的要求。學(xué)生空間觀念和推理與論證的要求。 D C BAO 思考驗(yàn)證:思考驗(yàn)證:如圖如圖1 1,ABAB為半圓為半圓O O的直徑,的直徑,C C為半圓上為半圓上 任意一點(diǎn)(與點(diǎn)任意一點(diǎn)(與點(diǎn)A A、B B不重合),過點(diǎn)不重合),過點(diǎn)C C作作CDA

51、BCDAB, 垂足為垂足為D D,ADADa a,DBDBb b 試根據(jù)圖形驗(yàn)證試根據(jù)圖形驗(yàn)證 ,并指出等號(hào)成立時(shí),并指出等號(hào)成立時(shí) 的條件的條件 探索應(yīng)用:探索應(yīng)用:如圖如圖2 2,已知,已知A(A(3 3,0)0),B(0B(0,4)4),P P 為雙曲線為雙曲線 上的任意一點(diǎn),過點(diǎn)上的任意一點(diǎn),過點(diǎn)P P作作PCxPCx 軸于點(diǎn)軸于點(diǎn)C C,PDyPDy軸于點(diǎn)軸于點(diǎn)D D求四邊形求四邊形ABCDABCD面積的最面積的最 小值,并說明此時(shí)四邊形小值,并說明此時(shí)四邊形ABCDABCD的形狀的形狀 一、要重視基礎(chǔ)訓(xùn)練一、要重視基礎(chǔ)訓(xùn)練 中考試題首先著重考查基礎(chǔ)知識(shí)和基本技能,中考試題首先著重考

52、查基礎(chǔ)知識(shí)和基本技能, (容易題至少占(容易題至少占60%60%,中檔題占,中檔題占30%30%),我們深),我們深 切地感受到,基礎(chǔ)不扎實(shí),是考生失分的主要原切地感受到,基礎(chǔ)不扎實(shí),是考生失分的主要原 因之一,因此,加強(qiáng)基礎(chǔ)知識(shí)仍然是當(dāng)前必須注因之一,因此,加強(qiáng)基礎(chǔ)知識(shí)仍然是當(dāng)前必須注 意的一個(gè)重要問題意的一個(gè)重要問題 1 1關(guān)注關(guān)注標(biāo)準(zhǔn)標(biāo)準(zhǔn) 關(guān)注標(biāo)準(zhǔn)加強(qiáng)和減弱的地方。關(guān)注標(biāo)準(zhǔn)加強(qiáng)和減弱的地方。 2 2必須加強(qiáng)平時(shí)的基礎(chǔ)知識(shí)和基本技能必須加強(qiáng)平時(shí)的基礎(chǔ)知識(shí)和基本技能 的教學(xué)。的教學(xué)。 讓學(xué)生生有充分的時(shí)間,扎扎實(shí)實(shí)地學(xué)習(xí)基讓學(xué)生生有充分的時(shí)間,扎扎實(shí)實(shí)地學(xué)習(xí)基 本概念,基本方法和基本技能,重

53、視經(jīng)常性的復(fù)本概念,基本方法和基本技能,重視經(jīng)常性的復(fù) 習(xí),不斷學(xué)習(xí),不斷鞏固,而不是急急忙忙地趕習(xí),不斷學(xué)習(xí),不斷鞏固,而不是急急忙忙地趕 進(jìn)度,依靠延長(zhǎng)總復(fù)習(xí)時(shí)間來(lái)解決問題除了理進(jìn)度,依靠延長(zhǎng)總復(fù)習(xí)時(shí)間來(lái)解決問題除了理 解基本概念,掌握基本技能外,還必須掌握基本解基本概念,掌握基本技能外,還必須掌握基本 的方法,包括常用的數(shù)學(xué)方法和基本的數(shù)學(xué)思想,的方法,包括常用的數(shù)學(xué)方法和基本的數(shù)學(xué)思想, 這是目前的薄弱環(huán)節(jié)之一雖然運(yùn)算能力也屬于這是目前的薄弱環(huán)節(jié)之一雖然運(yùn)算能力也屬于 基本技能,這是考生失分的重要原因,必須基本技能,這是考生失分的重要原因,必須 引起重視要解決這個(gè)問題,平時(shí)必須扎扎實(shí)實(shí)

54、地下引起重視要解決這個(gè)問題,平時(shí)必須扎扎實(shí)實(shí)地下 功夫,對(duì)學(xué)生的平時(shí)訓(xùn)練高標(biāo)準(zhǔn)、嚴(yán)要求,只有這樣,功夫,對(duì)學(xué)生的平時(shí)訓(xùn)練高標(biāo)準(zhǔn)、嚴(yán)要求,只有這樣, 才能做到答題規(guī)范、表述準(zhǔn)確、推斷合理計(jì)算能力,才能做到答題規(guī)范、表述準(zhǔn)確、推斷合理計(jì)算能力, 有時(shí)不僅是能力,更是一種計(jì)算意識(shí)。是要靠平時(shí)的有時(shí)不僅是能力,更是一種計(jì)算意識(shí)。是要靠平時(shí)的 點(diǎn)滴訓(xùn)練積攢而成的。點(diǎn)滴訓(xùn)練積攢而成的。 3 3讓學(xué)生經(jīng)歷探索數(shù)量關(guān)系和變化規(guī)律的過讓學(xué)生經(jīng)歷探索數(shù)量關(guān)系和變化規(guī)律的過 程。程。 運(yùn)用數(shù)學(xué)的符號(hào)、概念、定理和公式去表達(dá)運(yùn)用數(shù)學(xué)的符號(hào)、概念、定理和公式去表達(dá) 現(xiàn)實(shí)世界中所存在的數(shù)量關(guān)系,并掌握其中的變現(xiàn)實(shí)世界中所

55、存在的數(shù)量關(guān)系,并掌握其中的變 化規(guī)律,是數(shù)學(xué)教學(xué)的主要目標(biāo)之一,學(xué)生數(shù)學(xué)化規(guī)律,是數(shù)學(xué)教學(xué)的主要目標(biāo)之一,學(xué)生數(shù)學(xué) 知識(shí)的形成與整體素質(zhì)的發(fā)展,在很大程度上是知識(shí)的形成與整體素質(zhì)的發(fā)展,在很大程度上是 在他經(jīng)歷的探索性活動(dòng)的過程中完成的。初中在他經(jīng)歷的探索性活動(dòng)的過程中完成的。初中 “數(shù)與代數(shù)數(shù)與代數(shù)”的內(nèi)容中充滿了用來(lái)表達(dá)數(shù)學(xué)規(guī)律的知的內(nèi)容中充滿了用來(lái)表達(dá)數(shù)學(xué)規(guī)律的知 識(shí),如,方程、函數(shù)、不等式等。因此,在教學(xué)過識(shí),如,方程、函數(shù)、不等式等。因此,在教學(xué)過 程中,應(yīng)該讓學(xué)生充分地經(jīng)歷探索事物變化規(guī)律的程中,應(yīng)該讓學(xué)生充分地經(jīng)歷探索事物變化規(guī)律的 過程,而不是要求考生死記硬背基本概念、公式、

56、過程,而不是要求考生死記硬背基本概念、公式、 定理,法則,更不是進(jìn)行簡(jiǎn)單機(jī)械的重復(fù)訓(xùn)練比如定理,法則,更不是進(jìn)行簡(jiǎn)單機(jī)械的重復(fù)訓(xùn)練比如 重視注重公式、法則的探索過程。重視注重公式、法則的探索過程。 4 4加強(qiáng)數(shù)學(xué)與現(xiàn)實(shí)的聯(lián)系加強(qiáng)數(shù)學(xué)與現(xiàn)實(shí)的聯(lián)系, ,發(fā)展學(xué)生應(yīng)用數(shù)發(fā)展學(xué)生應(yīng)用數(shù) 學(xué)的意識(shí)和能力學(xué)的意識(shí)和能力 初中代數(shù)內(nèi)容在具備一定的抽象性的同時(shí),也初中代數(shù)內(nèi)容在具備一定的抽象性的同時(shí),也 相應(yīng)地具有更為豐富的現(xiàn)實(shí)背景。這使得我們可以相應(yīng)地具有更為豐富的現(xiàn)實(shí)背景。這使得我們可以 選擇更貼近生活實(shí)際的問題情境去開展代數(shù)的學(xué)習(xí)。選擇更貼近生活實(shí)際的問題情境去開展代數(shù)的學(xué)習(xí)。 5 5重視數(shù)與代數(shù)知識(shí)與

57、其它數(shù)學(xué)知識(shí)的聯(lián)系重視數(shù)與代數(shù)知識(shí)與其它數(shù)學(xué)知識(shí)的聯(lián)系 (1 1)加強(qiáng)方程、不等式、函數(shù)等內(nèi)容的聯(lián)系,)加強(qiáng)方程、不等式、函數(shù)等內(nèi)容的聯(lián)系, (2 2)應(yīng)強(qiáng)調(diào)同一函數(shù)不同表示法的特點(diǎn)和聯(lián)系)應(yīng)強(qiáng)調(diào)同一函數(shù)不同表示法的特點(diǎn)和聯(lián)系 (3 3)適當(dāng)選用統(tǒng)計(jì)或概率問題作為有關(guān)代數(shù)知識(shí))適當(dāng)選用統(tǒng)計(jì)或概率問題作為有關(guān)代數(shù)知識(shí) 的學(xué)習(xí)素材的學(xué)習(xí)素材 (4 4)利用幾何圖形解決某些代數(shù)問題,例如,利)利用幾何圖形解決某些代數(shù)問題,例如,利 用圖形的面積,探索乘法公式。用圖形的面積,探索乘法公式。 二、要凸顯能力培養(yǎng)二、要凸顯能力培養(yǎng) 1 1注重培養(yǎng)學(xué)生的建模能力,促進(jìn)學(xué)生由注重培養(yǎng)學(xué)生的建模能力,促進(jìn)學(xué)生由

58、 “學(xué)數(shù)學(xué)學(xué)數(shù)學(xué)”向向“用數(shù)學(xué)用數(shù)學(xué)”轉(zhuǎn)變轉(zhuǎn)變 長(zhǎng)期使用純數(shù)學(xué)求解的試題是導(dǎo)致初中數(shù)學(xué)教長(zhǎng)期使用純數(shù)學(xué)求解的試題是導(dǎo)致初中數(shù)學(xué)教 學(xué)進(jìn)行大量重復(fù)解題訓(xùn)練的重要原因之一新的學(xué)進(jìn)行大量重復(fù)解題訓(xùn)練的重要原因之一新的 標(biāo)準(zhǔn)標(biāo)準(zhǔn)指出:通過學(xué)習(xí),學(xué)生能夠用數(shù)學(xué)的思維指出:通過學(xué)習(xí),學(xué)生能夠用數(shù)學(xué)的思維 方式去觀察、分析現(xiàn)實(shí)社會(huì),去解決生活中和其他方式去觀察、分析現(xiàn)實(shí)社會(huì),去解決生活中和其他 學(xué)科學(xué)習(xí)中的問題,增強(qiáng)應(yīng)用意識(shí)。因此在平時(shí)的學(xué)科學(xué)習(xí)中的問題,增強(qiáng)應(yīng)用意識(shí)。因此在平時(shí)的 教學(xué)中應(yīng)聯(lián)系學(xué)生生活實(shí)際,選擇具有應(yīng)用背景的教學(xué)中應(yīng)聯(lián)系學(xué)生生活實(shí)際,選擇具有應(yīng)用背景的 試題,以培養(yǎng)學(xué)生的觀察能力、分析能力、建立數(shù)試題,以培養(yǎng)學(xué)生的觀察能力、分析能力、建立數(shù) 學(xué)模型并進(jìn)行解釋與應(yīng)用的能力。學(xué)模型并進(jìn)行解釋與

溫馨提示

  • 1. 本站所有資源如無(wú)特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。

最新文檔

評(píng)論

0/150

提交評(píng)論