線性代數(shù)復習PPT課件_第1頁
線性代數(shù)復習PPT課件_第2頁
線性代數(shù)復習PPT課件_第3頁
線性代數(shù)復習PPT課件_第4頁
線性代數(shù)復習PPT課件_第5頁
已閱讀5頁,還剩2頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領

文檔簡介

1、. , .AFPPAFP 行初等變換設矩陣最簡形矩陣則存在可逆矩陣使. 求( ,)( ,).A EF PPPAF 行初等變換設最簡形,則 可逆,且引理引理. 定理定理. 存在可逆矩陣P,Q 使PAQB (3)矩陣A等價于B(1)矩陣A行等價于B存在可逆矩陣P 使PAB存在可逆矩陣Q 使AQB(2)矩陣A列等價于B問題問題.第1頁/共7頁二二. 矩陣的秩矩陣的秩 定義定義. 若在矩陣A中有一個r階子式D非零 且所有r1階子式(如果存在的話)都為零 則稱D為矩陣A的一個最高階非零子式 稱數(shù)r為矩陣A的秩 記作R(A) 規(guī)定零矩陣的秩等于0 ( ).ABBR A 有限次行初等變換階梯形矩陣設,則 中

2、非零行的個數(shù)求矩陣的秩求矩陣的秩.第2頁/共7頁矩陣秩的基本性質矩陣秩的基本性質0R(Amn)minm n R(AT)R(A) 3. 若AB 則R(A)R(B) 4.若P, Q可逆 則R(PAQ)R(A)0,()( ).RAR A特別的若數(shù)則5. 0( ).nAAR An 階矩陣 可逆6. maxR(A) R(B)R(A B)R(A)R(B) 特別地 當B 為列向量時 有 R(A)R(A )R(A)17. ()( )( ).R A BR AR B8. ()min ( ), ( ).(7)R ABR A R B見下節(jié)定理9.0. ( )( ).(13)m nn tABR AR Bn若則見下節(jié)例第

3、3頁/共7頁三三. 求解線性方程組求解線性方程組定理定理. . (1) ( )( ,);(2) ( )( ,);(3) ( )( ,).m nAXR AR AR AR AnR AR An線性方程組無解有唯一解有無窮解定理定理. ( )( ,).AXR AR A有解定理定理. 0( ).0( ).m nm nAXR AnAXR An有非零解只有零解定理定理. ( )( , ).m nn lm lAXBR AR A B矩陣方程有解第4頁/共7頁(一一). 線性方程組線性方程組AmnXn1=m1的求解的求解.1.不含參數(shù)的線性方程組的求解不含參數(shù)的線性方程組的求解.1111( ,)(,)().AAAXAX 行初等變換最簡形矩陣或階梯形矩陣則與同解2.含參數(shù)的線性方程組的求解含參數(shù)的線性方程組的求解.11(1) ( ,)(,)AA 行初等變換階梯形矩陣(2) ,.AAn若 是含參數(shù)的矩陣 且 是 階方陣 則用克拉默法則求解| 0.n nAAX即有唯一解| 0.n nA然后對時討論方程組的求解第5頁/共7頁(二二). 求解矩陣方程求解矩陣方程AmnXnl=Bml .1111( , )(,),.A BA BAXBA XB 行初等變換最簡形矩陣則與同解1, ,AXA B特別的 若 可逆 則( , )A B 行初等變換最簡形矩陣1, ,ABEXA若 可逆

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經(jīng)權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
  • 6. 下載文件中如有侵權或不適當內容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論