版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)
文檔簡介
1、第3講 數(shù)學(xué)歸納法A級基礎(chǔ)演練(時間:30分鐘滿分:55分)一、選擇題(每小題5分,共20分) 1用數(shù)學(xué)歸納法證明不等式1(nN*)成立,其初始值至少應(yīng)取() A7 B8 C9 D10解析左邊12,代入驗證可知n的最小值是8.答案B2用數(shù)學(xué)歸納法證明命題“當n是正奇數(shù)時,xnyn能被xy整除”,在第二步時,正確的證法是()A假設(shè)nk(kN),證明nk1命題成立B假設(shè)nk(k是正奇數(shù)),證明nk1命題成立C假設(shè)n2k1(kN),證明nk1命題成立D假設(shè)nk(k是正奇數(shù)),證明nk2命題成立解析A、B、C中,k1不一定表示奇數(shù),只有D中k為奇數(shù),k2為奇數(shù)答案D3用數(shù)學(xué)歸納法證明1,則當nk1時,
2、左端應(yīng)在nk的基礎(chǔ)上加上()1 / 11A. BC. D.解析當nk時,左側(cè)1,當nk1時,左側(cè)1.答案C4對于不等式<n1(nN*),某同學(xué)用數(shù)學(xué)歸納法的證明過程如下:(1)當n1時,<11,不等式成立(2)假設(shè)當nk(kN*且k1)時,不等式成立,即<k1,則當nk1時,<(k1)1,所以當nk1時,不等式成立,則上述證法()A過程全部正確Bn1驗得不正確C歸納假設(shè)不正確D從nk到nk1的推理不正確解析在nk1時,沒有應(yīng)用nk時的假設(shè),故推理錯誤答案D二、填空題(每小題5分,共10分)5用數(shù)學(xué)歸納法證明不等式的過程中,由nk推導(dǎo)nk1時,不等式的左邊增加的式子是_解
3、析不等式的左邊增加的式子是,故填.答案6如下圖,在楊輝三角形中,從上往下數(shù)共有n(nN*)行,在這些數(shù)中非1的數(shù)字之和是_111121133114641解析所有數(shù)字之和Sn202222n12n1,除掉1的和為2n1(2n1)2n2n.答案2n2n三、解答題(共25分)7(12分)已知Sn1(n>1,nN*),求證:S2n>1(n2,nN*)證明(1)當n2時,S2nS41>1,即n2時命題成立;(2)假設(shè)當nk(k2,kN*)時命題成立,即S2k1>1,則當nk1時,S2k11>1>111,故當nk1時,命題成立由(1)和(2)可知,對n2,nN*.不等式S
4、2n>1都成立8(13分)已知數(shù)列an:a11,a22,a3r,an3an2(nN*),與數(shù)列bn:b11,b20,b31,b40,bn4bn(nN*)記Tnb1a1b2a2b3a3bnan.(1)若a1a2a3a1264,求r的值;(2)求證:T12n4n(nN*)(1)解a1a2a3a1212r34(r2)56(r4)78(r6)484r.484r64,r4.(2)證明用數(shù)學(xué)歸納法證明:當nN*時,T12n4n.當n1時,T12a1a3a5a7a9a114,故等式成立假設(shè)nk時等式成立,即T12k4k,那么當nk1時,T12(k1)T12ka12k1a12k3a12k5a12k7a1
5、2k9a12k114k(8k1)(8kr)(8k4)(8k5)(8kr4)(8k8)4k44(k1),等式也成立根據(jù)和可以斷定:當nN*時,T12n4n.B級能力突破(時間:30分鐘滿分:45分)一、選擇題(每小題5分,共10分)1用數(shù)學(xué)歸納法證明123n2,則當nk1時左端應(yīng)在nk的基礎(chǔ)上加上()Ak21B(k1)2C.D(k21)(k22)(k23)(k1)2解析當nk時,左側(cè)123k2,當nk1時,左側(cè)123k2(k21)(k1)2當nk1時,左端應(yīng)在nk的基礎(chǔ)上加上(k21)(k22)(k23)(k1)2.答案D2(2013·廣州一模)已知12×33×32
6、433n×3n13n(nab)c對一切nN*都成立,則a、b、c的值為()Aa,bc BabcCa0,bc D不存在這樣的a、b、c解析等式對一切nN*均成立,n1,2,3時等式成立,即整理得解得a,bc.答案A二、填空題(每小題5分,共10分)3已知整數(shù)對的序列如下:(1,1),(1,2),(2,1),(1,3),(2,2),(3,1),(1,4),(2,3),(3,2),(4,1),(1,5),(2,4),則第60個數(shù)對是_解析本題規(guī)律:211;31221;4132231;514233241;一個整數(shù)n所擁有數(shù)對為(n1)對設(shè)123(n1)60,60,n11時還多5對數(shù),且這5對
7、數(shù)和都為12,12111210394857,第60個數(shù)對為(5,7)答案(5,7)4已知數(shù)列an的通項公式an(nN*),f(n)(1a1)(1a2)(1an),試通過計算f(1),f(2),f(3)的值,推測出f(n)的值是_解析f(1)1a11,f(2)(1a1)(1a2)f(1)·×,f(3)(1a1)·(1a2)(1a3)f(2)·×,由此猜想,f(n)(nN*)答案(nN*)三、解答題(共25分)5(12分)設(shè)數(shù)列an滿足a13,an1a2nan2,n1,2,3,(1)求a2,a3,a4的值,并猜想數(shù)列an的通項公式(不需證明);(2
8、)記Sn為數(shù)列an的前n項和,試求使得Sn<2n成立的最小正整數(shù)n,并給出證明解(1)a25,a37,a49,猜想an2n1.(2)Snn22n,使得Sn<2n成立的最小正整數(shù)n6.下證:n6(nN*)時都有2n>n22n.n6時,26>622×6,即64>48成立;假設(shè)nk(k6,kN*)時,2k>k22k成立,那么2k12·2k>2(k22k)k22kk22k>k22k32k(k1)22(k1),即nk1時,不等式成立;由、可得,對于所有的n6(nN*)都有2n>n22n成立6(13分)(2012·安徽)數(shù)
9、列xn滿足x10,xn1xxnc(nN*)(1)證明:xn是遞減數(shù)列的充分必要條件是c<0;(2)求c的取值范圍,使xn是遞增數(shù)列(1)證明先證充分性,若c<0,由于xn1xxncxnc<xn,故xn是遞減數(shù)列;再證必要性,若xn是遞減數(shù)列,則由x2<x1可得c<0.(2)解假設(shè)xn是遞增數(shù)列由x10,得x2c,x3c22c.由x1<x2<x3,得0<c<1.由xn<xn1xxnc知,對任意n1都有xn<,注意到 xn1xxnc(1xn)(xn),由式和式可得1xn>0,即xn<1.由式和xn0還可得,對任意n1都有xn1(1)(xn)反復(fù)運用式,得xn(1)n1(x1)<(1)n1,xn<1和 xn<(1)n1兩式相加,知21<(1)n1對任意n1成立根據(jù)指數(shù)函數(shù)y(1)n的性質(zhì),得210,c,故0<c.若0<c,要證數(shù)列xn為遞增數(shù)列,即xn1xnxc>0,即證xn<對任意n1成立下面用數(shù)學(xué)歸納法證明當0<c時,xn<對任意n1成立(i)當n1時,x10<,結(jié)論成立(ii)假設(shè)當nk(kN*)時,結(jié)論成立,即xn<.因為函數(shù)f(x)x2xc在區(qū)間內(nèi)單調(diào)遞增,所以xk1f(
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
- 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 2025年度特色餐飲連鎖品牌授權(quán)合同3篇
- 2025年度生態(tài)修復(fù)工程承包商借款合同范本4篇
- 2025年度數(shù)據(jù)中心運維外包合同4篇
- 2025年度體育用品代理服務(wù)合同模板4篇
- 2025年度物流車輛環(huán)保排放檢測合同4篇
- 2025年度人工智能技術(shù)應(yīng)用與開發(fā)合同2篇
- 2024版全新銷售擔保合同范本下載
- 2025年度新能源汽車充電站車位銷售與管理協(xié)議4篇
- 2024羊絨產(chǎn)業(yè)技術(shù)創(chuàng)新與成果轉(zhuǎn)化合作合同3篇
- 2025年度智能車棚建造與一體化安裝服務(wù)合同4篇
- 專升本英語閱讀理解50篇
- 施工單位值班人員安全交底和要求
- 中國保險用戶需求趨勢洞察報告
- 數(shù)字化轉(zhuǎn)型指南 星展銀行如何成為“全球最佳銀行”
- 中餐烹飪技法大全
- 靈芝孢子油減毒作用課件
- 現(xiàn)場工藝紀律檢查表
- 醫(yī)院品管圈與護理質(zhì)量持續(xù)改進PDCA案例降低ICU病人失禁性皮炎發(fā)生率
- 新型電力系統(tǒng)研究
- 烘干廠股東合作協(xié)議書
- 法院服務(wù)外包投標方案(技術(shù)標)
評論
0/150
提交評論