2022《倍數(shù)和因數(shù)》數(shù)學(xué)教學(xué)反思_第1頁
2022《倍數(shù)和因數(shù)》數(shù)學(xué)教學(xué)反思_第2頁
2022《倍數(shù)和因數(shù)》數(shù)學(xué)教學(xué)反思_第3頁
2022《倍數(shù)和因數(shù)》數(shù)學(xué)教學(xué)反思_第4頁
2022《倍數(shù)和因數(shù)》數(shù)學(xué)教學(xué)反思_第5頁
已閱讀5頁,還剩18頁未讀, 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡介

1、2022倍數(shù)和因數(shù)數(shù)學(xué)教學(xué)反思倍數(shù)和因數(shù)數(shù)學(xué)教學(xué)反思身為一位優(yōu)秀的教師,我們需要很強(qiáng)的教學(xué)能力,教學(xué)的心得體會(huì)可以總結(jié)在教學(xué)反思中,來參考自己需要的教學(xué)反思吧!以下是我為大家收集的倍數(shù)和因數(shù)數(shù)學(xué)教學(xué)反思,歡迎閱讀,希望大家能夠喜歡。倍數(shù)和因數(shù)數(shù)學(xué)教學(xué)反思1倍數(shù)和因數(shù)是四下第九單元的內(nèi)容。教學(xué)時(shí),我首先讓學(xué)生動(dòng)手操作把12個(gè)小正方形擺成不同的長方形,再讓學(xué)生寫出不同的乘法算式,借助乘法算式引出倍數(shù)和因數(shù)的意義。這樣在學(xué)生已有的知識(shí)基礎(chǔ)上,從動(dòng)手操作到直觀感知,讓學(xué)生自主體驗(yàn)數(shù)與形的結(jié)合,進(jìn)而形成倍數(shù)與因數(shù)的意義,使學(xué)生初步建立了“倍數(shù)與因數(shù)”的概念。根據(jù)算式直接說明誰是誰的倍數(shù),誰是誰的因數(shù),學(xué)

2、生很容易接受,再通過學(xué)生自己舉例和交流,進(jìn)一步加深對(duì)倍數(shù)和因數(shù)意義的理解。從學(xué)生的反應(yīng)和課堂氣氛來看,教學(xué)效果還是不錯(cuò)的。能不重復(fù)、不遺漏、有序地找出一個(gè)數(shù)的倍數(shù)和因數(shù),是本課的教學(xué)難點(diǎn)。教學(xué)時(shí),我先讓學(xué)生自己找3的倍數(shù),匯報(bào)交流后通過對(duì)比(一種是沒有順序,一種是有序的)得出如何有序地找一個(gè)數(shù)的倍數(shù)的方法。對(duì)于倍數(shù),學(xué)生在以前的學(xué)習(xí)中已有所接觸,所以學(xué)生很容易學(xué),用的時(shí)間也比較少。對(duì)于找一個(gè)數(shù)的因數(shù),學(xué)生最容易犯的錯(cuò)誤就是漏找,即找不全。所以在學(xué)生交流匯報(bào)時(shí),我結(jié)合學(xué)生所敘思維過程,相機(jī)引導(dǎo)并形成有條理的板書,如:36÷1=36,36÷2=18,36÷3=12,3

3、6÷4=9,36÷6=6。這樣的板書幫助學(xué)生有序的思考,形成明晰的解題思路。學(xué)生通過觀察,發(fā)現(xiàn)當(dāng)找到的兩個(gè)自然數(shù)非常接近時(shí),就不需要再找下去了。書寫格式這一細(xì)節(jié)的教學(xué),既避免了教師羅嗦的講解,又有效突破了教學(xué)難點(diǎn)。倍數(shù)和因數(shù)數(shù)學(xué)教學(xué)反思2這節(jié)課帶給我的感想是頗多的,但綜觀整堂課,我覺得要改進(jìn)的地方還有很多,我只有不斷地進(jìn)行反思,才能不斷地完善思路,最終才能有所悟,有所長。下面就說說我對(duì)本課在教學(xué)設(shè)計(jì)上的反思和一些初淺的想法。本單元內(nèi)容在編排上與老教材有較大的差異,比如在認(rèn)識(shí)“因數(shù)、倍數(shù)”時(shí),不再運(yùn)用整除的概念為基礎(chǔ),引出因數(shù)和倍數(shù),而是直接從乘法算式引出因數(shù)和倍數(shù)的概念,目

4、的是減去“整除”的數(shù)學(xué)化定義,降低學(xué)生的認(rèn)知難度,雖然課本沒出現(xiàn)“整除”一詞,但本質(zhì)上仍是以整除為基礎(chǔ)。本課的教學(xué)重點(diǎn)是求一個(gè)數(shù)的因數(shù),在學(xué)生已掌握了因數(shù)、倍數(shù)的概念及兩者之間的關(guān)系的基礎(chǔ)上,對(duì)學(xué)生而言,怎樣求一個(gè)數(shù)的因數(shù),難度并不算大,因此教學(xué)例題“找出18的因數(shù)”時(shí),我先放手讓學(xué)生自己找,學(xué)生在獨(dú)立思考的過程中,自然而然的會(huì)結(jié)合自己對(duì)因數(shù)概念的理解,找到解決問題的方法(培養(yǎng)學(xué)生對(duì)已有知識(shí)的運(yùn)用意識(shí)),然后在交流中不難發(fā)現(xiàn)可用乘法或除法來求一個(gè)數(shù)的因數(shù)(列出積是18的乘法算式或列出被除數(shù)是18的除法算式)。在這個(gè)學(xué)習(xí)活動(dòng)環(huán)節(jié)中,我留給了學(xué)生較充分的思維活動(dòng)的空間,有了自由活動(dòng)的空間,才會(huì)有思

5、維創(chuàng)造的火花,才能體現(xiàn)教育活動(dòng)的終極目標(biāo)。特別是用除法找因數(shù)的學(xué)生,正是因?yàn)樗麄円庾R(shí)到了因數(shù)與倍數(shù)之間的整除關(guān)系的本質(zhì),才會(huì)想到用除法來解決問題,我也不由得佩服這些孩子對(duì)知識(shí)的遷移能力。在這個(gè)環(huán)節(jié)的處理上,教材的本意是先由教師提出“想一想,幾和幾相乘得18?”引導(dǎo)學(xué)生從因數(shù)的概念,用乘法來找因數(shù),而我考慮到本班孩子的學(xué)情(絕大多數(shù)學(xué)生能夠運(yùn)用所學(xué)知識(shí),找到求因數(shù)的方法),如教師一開始就引導(dǎo)學(xué)生:想幾和幾相乘,勢必會(huì)造成先入為主,妨礙學(xué)生創(chuàng)造性的思維活動(dòng)?用已有的經(jīng)驗(yàn)自主建構(gòu)新知是提高學(xué)生學(xué)習(xí)能力的有效途徑,讓學(xué)生獨(dú)立思考、自主探索、促思(促進(jìn)學(xué)生思維發(fā)展)、提能(提高學(xué)習(xí)能力)是我的教學(xué)策略主

6、要內(nèi)容。至于這兩種方法孰重孰輕,的確難以定論。實(shí)際上,對(duì)于數(shù)字較小的數(shù)(口訣表內(nèi)的),用乘法來求因數(shù)還是比較容易,但是超出口訣表范圍的數(shù)用除法則更能顯示出它的優(yōu)勢,如求54的因數(shù)有哪些?學(xué)生要直接找出2和幾相乘得54,3和幾相乘得54,4和幾相乘得54,顯然加大了思維難度,如用除法不是更簡單直接一些嗎?學(xué)生的學(xué)習(xí)潛力是巨大的,教師是學(xué)生學(xué)習(xí)的引領(lǐng)者,因此教師的觀念和行為決定了學(xué)生的學(xué)習(xí)方式和結(jié)果,所以我認(rèn)為教師要專研教材,充分利用教材,根據(jù)學(xué)生的實(shí)際情況,創(chuàng)造性地使用教材,為學(xué)生能力的發(fā)展提供素材和創(chuàng)造條件,真正實(shí)現(xiàn)學(xué)生學(xué)習(xí)的主體地位。學(xué)生在找一個(gè)數(shù)的因數(shù)時(shí)最常犯的錯(cuò)誤就是漏找,即找不全。學(xué)生

7、怎樣按一定順序找全因數(shù)這也正是本課教學(xué)的難點(diǎn)。所以在學(xué)生交流匯報(bào)時(shí),我結(jié)合學(xué)生所敘思維過程,相機(jī)引導(dǎo)并形成有條理的板書,如:36÷1=36,36÷2=18,36÷3=12,36÷4=9。這樣的板書幫助學(xué)生有序的思考,形成明晰的解題思路的作用是毋庸質(zhì)疑的。教師能像教材中那樣一頭一尾地成對(duì)板書因數(shù),這樣既不容易寫漏,而且學(xué)生么隨著流程的進(jìn)行,勢必會(huì)感受到越往下找,區(qū)間越小,需要考慮的數(shù)也就越少。當(dāng)找到兩個(gè)相鄰的自然數(shù)時(shí),他們自然就不會(huì)再找下去了。書寫格式這一細(xì)節(jié)的教學(xué),既避免了教師羅嗦的講解,又有效突破了教學(xué)難點(diǎn),我相信像這樣潤物無聲的細(xì)節(jié),無論于學(xué)生、于課

8、堂都是有利無弊的。倍數(shù)和因數(shù)數(shù)學(xué)教學(xué)反思3因數(shù)和倍數(shù)這部分內(nèi)容學(xué)生初次接觸,對(duì)于學(xué)生來說是比較難掌握的內(nèi)容。首先是名稱比較抽象,在現(xiàn)實(shí)生活中又不經(jīng)常接觸,對(duì)這樣的概念教學(xué),要想讓學(xué)生真正理解、掌握、判斷,需要一個(gè)長期的消化理解的過程。同時(shí)這部分內(nèi)容是比較重要的,為五年級(jí)的最小公倍數(shù)和最大公因數(shù)的學(xué)習(xí)奠定了基礎(chǔ)。本節(jié)可充分發(fā)揮學(xué)生的主體性,讓每個(gè)學(xué)生都能參加到數(shù)學(xué)知識(shí)的學(xué)習(xí)中去,調(diào)動(dòng)學(xué)生學(xué)習(xí)的興趣和主動(dòng)性。本節(jié)課主要從以下幾個(gè)方面進(jìn)行教學(xué)的。一:動(dòng)手操作 探究方法.我創(chuàng)設(shè)有效的數(shù)學(xué)學(xué)習(xí)情境,數(shù)形結(jié)合,變抽象為直觀。首先讓學(xué)生動(dòng)手操作把個(gè)小正方形擺成不同的長方形,再讓學(xué)生寫出不同的乘法算式,借助乘

9、法算式引出因數(shù)和倍數(shù)的意義。這樣在學(xué)生已有的知識(shí)基礎(chǔ)上,從動(dòng)手操作,直觀感知,變抽象為具體。二、倍數(shù)教學(xué),發(fā)現(xiàn)特點(diǎn)。利用乘法算式,讓學(xué)生找出3的倍數(shù),這里讓學(xué)生理解:(1)3的倍數(shù)應(yīng)該是3與一個(gè)數(shù)相乘的積。(2)找3的倍數(shù)是要有一定的順序,依次用1、2、3與3相乘。有了找3倍數(shù)的方法,在上學(xué)生找出2和5的倍數(shù)。這樣即鞏固對(duì)例題的理解,同時(shí)也為接下來的討論倍數(shù)的特點(diǎn)奠定基礎(chǔ)。最后讓學(xué)生通過討論發(fā)現(xiàn):(1)一個(gè)數(shù)的倍數(shù)個(gè)數(shù)是無限的(要用省略號(hào))。(2)一個(gè)數(shù)的最小倍數(shù)是本身,沒有最大的倍數(shù)。三、因數(shù)教學(xué),發(fā)現(xiàn)特點(diǎn)。找一個(gè)數(shù)因數(shù)的方法是本節(jié)課的難點(diǎn)。找一個(gè)數(shù)的因數(shù)的方法和倍數(shù)相似,大部分學(xué)生都用乘法

10、算式尋找一個(gè)數(shù)的因數(shù),這里教師可以通過幾到有序排列的除法算式啟發(fā)學(xué)生進(jìn)一步理解。強(qiáng)調(diào)有序(從小到大),不重復(fù)、不遺漏。隨后讓學(xué)生找出15、16的因數(shù)有那些。最后通過比較討論讓學(xué)生得出因數(shù)的特點(diǎn):(1)一個(gè)數(shù)因數(shù)的.個(gè)數(shù)是有限的。(2)一個(gè)數(shù)最小的因數(shù)是1,最大的因數(shù)是本身。(讓學(xué)生明白所有的數(shù)都有因數(shù)1).四、練習(xí)反饋情況從學(xué)生的作業(yè)情況來看,大部分學(xué)生掌握的還是不錯(cuò)的,有部分基礎(chǔ)差的學(xué)生,有如下幾點(diǎn)錯(cuò)誤出現(xiàn):1、倍數(shù)沒有加省略號(hào)。2、分不清倍數(shù)和因數(shù),倍數(shù)也加省略號(hào),因數(shù)也加省略號(hào)。3、因數(shù)有遺漏的情況。從以上情況來看,在今后的教學(xué)中要多關(guān)注基礎(chǔ)比較差的學(xué)生,注意補(bǔ)差工作;同時(shí)要注意教學(xué)中細(xì)

11、節(jié)的處理。倍數(shù)和因數(shù)數(shù)學(xué)教學(xué)反思4教學(xué)倍數(shù)與因數(shù),這是一個(gè)非??菰锏恼n題,但我巧妙地運(yùn)用課文中的情景圖與學(xué)生的生活實(shí)際聯(lián)系,通過水果店各種水果的單價(jià)所顯示的數(shù)進(jìn)行分類,得出自然數(shù)、整數(shù)、小數(shù)、分?jǐn)?shù)和負(fù)數(shù),使學(xué)生體會(huì)生活中各種不同的數(shù)。為了讓學(xué)生理解倍數(shù)與因數(shù)的含意,教學(xué)過程中,我立足體現(xiàn)一個(gè)“實(shí)”字,讓學(xué)生從算式中找出能整除的算式,揭示整除、倍數(shù)、因數(shù)之間的關(guān)系,再通過舉例去驗(yàn)證倍數(shù)與因數(shù)之間的聯(lián)系,在推理中“悟”出知識(shí)的規(guī)律。學(xué)生在學(xué)習(xí)中實(shí)實(shí)在在經(jīng)歷了一個(gè)探究的過程?!皠?dòng)腦筋出教室”這一游戲的設(shè)計(jì),學(xué)生在積極參與探討、質(zhì)疑、創(chuàng)造的教學(xué)活動(dòng),既鞏固了知識(shí),又享受了數(shù)學(xué)思維的快樂。在授課時(shí),我體

12、驗(yàn)到了學(xué)生的快樂。當(dāng)學(xué)生用自己的學(xué)號(hào)說整除、因數(shù)、倍數(shù)之間的關(guān)系時(shí),由于像順口溜,很有趣。每個(gè)學(xué)生都很感興趣,說得很努力。原來,數(shù)學(xué)也很有趣倍數(shù)和因數(shù)數(shù)學(xué)教學(xué)反思5倍數(shù)和因數(shù)是我們工作室四月份研究的一個(gè)課例,我們是先抽簽上二十分鐘的課堂教學(xué),再進(jìn)行研討,我們研究了每一部分的處理方法,同時(shí),為了讓我們的課堂更加連貫、自然,我們也研究了例題之間的過渡環(huán)節(jié),嘗試找到更加恰當(dāng)?shù)奶幚矸椒āD谴窝芯恐笪覀児ぷ魇业拿恳晃怀蓡T都根據(jù)自己的想法修改了教案。前幾天我們工作室又在活動(dòng)中上了這節(jié)課,這次上課的是我,由于事先準(zhǔn)備的不夠充分課堂中發(fā)現(xiàn)了很多的問題,有上次研討過還需要改進(jìn)的問題,也有這次上課出現(xiàn)的新問題。

13、課后工作室的成員給了我很多的很好的建議,我根據(jù)好的建議修改了我的教學(xué)設(shè)計(jì),下面我來具體的說一說。1、情境導(dǎo)入。本節(jié)課的內(nèi)容是倍數(shù)和因數(shù)為了讓學(xué)生更清楚地感受倍數(shù)和因數(shù)的依存關(guān)系,我課上用了大頭兒子和小頭爸爸的例子,也用了我是老師,他們是學(xué)生的例子。但這兩個(gè)例子對(duì)于本課的教學(xué)或許沒有太多的意義,好像不能讓學(xué)生明確感受出倍數(shù)的因數(shù)的依存關(guān)系,所以我們可以把這一部分的內(nèi)容去掉,直接進(jìn)入課堂,讓學(xué)生進(jìn)行操作活動(dòng)。2、倍數(shù)和因數(shù)的意義。本課是想通過用12個(gè)完全相同的正方形拼成長方形的活動(dòng)來讓學(xué)生在活動(dòng)中初步感知倍數(shù)和因數(shù)的關(guān)系,再用具體的例子向?qū)W生說明倍數(shù)和因數(shù)的含義。在課堂中我直接讓學(xué)生進(jìn)行操作,兩人

14、小組活動(dòng),試著擺一擺,看看有沒有不同的擺法,在交流的時(shí)候讓學(xué)生說說自己的擺法,每排擺了幾個(gè),擺了幾排,怎樣用乘法算式表示,再讓學(xué)生有序地說一說,為后面找一個(gè)數(shù)的因數(shù)做好鋪墊。再有一道具體的算式舉例說明倍數(shù)和因數(shù)的含義,用我們過去學(xué)習(xí)的乘法算式中的乘數(shù)乘乘數(shù)等于積過渡到倍數(shù)和因數(shù),再讓學(xué)生說一說其他兩道乘法算式。說完后再給學(xué)生一個(gè)提醒,并讓學(xué)生再根據(jù)出示的算式說一說誰是誰的倍數(shù)和誰是誰的因數(shù),最后的時(shí)候讓學(xué)生自己寫一個(gè)算式,并說一說。3、找一個(gè)數(shù)的倍數(shù)。這應(yīng)該時(shí)本節(jié)課的重難點(diǎn)內(nèi)容,在教學(xué)中一定要讓學(xué)生說一說找倍數(shù)的方法,而我在上課的時(shí)候把這一個(gè)重要的部分一帶而過,可以看出來很大一部分學(xué)生是沒有掌

15、握找倍數(shù)的方法的。所以我在思考這一難點(diǎn)該如何突破?是不是應(yīng)讓學(xué)生先獨(dú)立想一想辦法,多說一說,給學(xué)生足夠多的時(shí)間讓學(xué)生去說自己用來找倍數(shù)的方法,這樣多種方法出來以后,我們可以對(duì)方法進(jìn)行優(yōu)化,選擇快速簡單的找法。在教學(xué)的時(shí)候,同時(shí)注培養(yǎng)學(xué)生有序?qū)懗霰稊?shù),注意倍數(shù)書寫的格式等意識(shí),可以比較有序的找和無序的找,讓學(xué)生自己感受有序的好處,學(xué)生有了有序地找的基本方法后,在進(jìn)行練習(xí)的時(shí)候也會(huì)選擇剛才優(yōu)化過的好的方法進(jìn)行練習(xí)。4、找倍數(shù)的特征。在完成找一個(gè)數(shù)的倍數(shù)之后,我們可以直接出示3,2,5的倍數(shù)是哪些,讓學(xué)生觀察三個(gè)倍數(shù),再說一說自己的發(fā)現(xiàn),放手讓學(xué)生去找或許學(xué)生能夠很快的找出來,但如果給好具體的問題,

16、可能會(huì)限制一些學(xué)生的思考。如果學(xué)生在觀察時(shí)沒有發(fā)現(xiàn)我們所想要總結(jié)的特征,可以對(duì)學(xué)生進(jìn)行適當(dāng)?shù)奶崾?,讓學(xué)生觀察一個(gè)數(shù)最小的倍數(shù),最大的倍數(shù)和倍數(shù)的個(gè)數(shù)等。先給學(xué)生足夠的時(shí)間讓學(xué)生自己去找,我們要相信他們藕能力做到。5、課堂常規(guī)的問題。在上課之前我應(yīng)先確定好小組的具體分配,以免學(xué)生在小組活動(dòng)中找不到合作的對(duì)象,如果上課之前具體的分好了,小組討論的效率會(huì)高很多。在上課時(shí),我要少說,把更多說的機(jī)會(huì)留給學(xué)生,讓學(xué)生去表達(dá)自己的想法,同時(shí)還要相信學(xué)生,不要怕學(xué)生不會(huì),而給出很多的條條框框,限制了學(xué)生的思維發(fā)展。倍數(shù)和因數(shù)數(shù)學(xué)教學(xué)反思6在上學(xué)期的白紙備課活動(dòng)中,我們高年段數(shù)學(xué)抽到的教學(xué)內(nèi)容就是因數(shù)與倍數(shù),這

17、個(gè)內(nèi)容是我沒有教過的,在看到教學(xué)內(nèi)容時(shí),我心里不禁在打鼓,我能找準(zhǔn)教學(xué)重難點(diǎn)嗎?能突破重難點(diǎn)嗎?一連串問題涌了上來,最后我還是讓自己冷靜下來,靜下心來認(rèn)真分析教材,盡自己最大的努力梳理出教學(xué)重難點(diǎn),創(chuàng)設(shè)情境、設(shè)計(jì)游戲來突出重點(diǎn)、突破難點(diǎn)。在設(shè)計(jì)完教學(xué)過程后,我也與同組的老師交流了活動(dòng)體會(huì)。原來在老教材中沒有因數(shù)這個(gè)概念,只有約數(shù)和倍數(shù),而且是由整除的概念引入的,但因?yàn)槲沂堑谝淮谓虒W(xué)這個(gè)內(nèi)容,很自然的就沒有被以往教材的教學(xué)定式所束縛,嘗到了新教材的甜頭。現(xiàn)在剛好又教了這個(gè)內(nèi)容,仔細(xì)參考了教學(xué)用書我才真正領(lǐng)悟到了新教材的新穎所在。新教材在引入因數(shù)和倍數(shù)的概念時(shí)與以往的教材有所不同。在以往的教材中,

18、都是通過除法算式來引出整除的概念,每個(gè)除法算式對(duì)應(yīng)著一對(duì)有整除關(guān)系的數(shù),如b÷an表示b能被a整除,b÷na表示b能被n整除。在此基礎(chǔ)上再引出因數(shù)和倍數(shù)的概念。實(shí)際上,由于乘除法本身就存在著互逆關(guān)系,用乘法算式(如bna)同樣可以表示整除的含義。因此,新教材中沒有用數(shù)學(xué)化的語言給“整除”下定義,而是利用一個(gè)簡單的實(shí)物圖(2行飛機(jī),每行6架)引出一個(gè)乘法算式2612,通過這個(gè)乘法算式直接給出因數(shù)和倍數(shù)的概念。這樣,學(xué)生不必通過12÷26得出12能被2整除,進(jìn)而2是12的因數(shù),12是2的倍數(shù)。再通過12÷62得出12能被6整除,進(jìn)而6是12的因數(shù),12是6的

19、倍數(shù),大大簡化了敘述和記憶的過程。在這兒,用一個(gè)乘法算式2612可以同時(shí)說明“2和6都是12的因數(shù),12是2的倍數(shù),也是6的倍數(shù)?!边@樣的設(shè)計(jì)既減輕了學(xué)生的學(xué)習(xí)負(fù)擔(dān)又讓學(xué)生在學(xué)習(xí)時(shí)盡量避免出現(xiàn)概念混淆、理解困難的問題。學(xué)生對(duì)新知掌握較牢,在實(shí)際教學(xué)中我就是這樣處理的,學(xué)生樂學(xué),思路清晰。倍數(shù)和因數(shù)數(shù)學(xué)教學(xué)反思7因數(shù)和倍數(shù)是一節(jié)數(shù)學(xué)概念課,人教版新教材在引入因數(shù)和倍數(shù)的概念時(shí)與以往的教材有所不同。(1)新課標(biāo)教材不再提“整除”的概念,也不再是從除法算式的觀察中引入本單元的學(xué)習(xí),而是反其道而行之,通過乘法算式來導(dǎo)入新知。(2)“約數(shù)”一詞被“因數(shù)”所取代。這樣的變化原因何在?我認(rèn)真研讀教材,通過學(xué)

20、習(xí)了解到以下信息:簽于學(xué)生在前面已經(jīng)具備了大量的區(qū)分整除與有余數(shù)除法的知識(shí)基礎(chǔ),對(duì)整除的含義已經(jīng)有了比較清楚的認(rèn)識(shí),不出現(xiàn)整除的定義并不會(huì)對(duì)學(xué)生理解其他概念產(chǎn)生任何影響。因此,本套教材中刪去了“整除”的數(shù)學(xué)化定義,而是借助整除的模式nab直接引出因數(shù)和倍數(shù)的概念。雖然學(xué)生已接觸過整除與有余數(shù)的除法,但我班學(xué)生對(duì)“整除”與“除盡”的內(nèi)涵與外延并不清晰。因此在教學(xué)時(shí),補(bǔ)充了兩道判斷題請學(xué)生辨析:11÷2=51。問:11是2的倍數(shù)嗎?為什么?因?yàn)?×0.8=4,所以5和0.8是4的因數(shù),4是5和0.8的倍數(shù),對(duì)嗎?為什么?特別是第2小題極具價(jià)值。價(jià)值不僅體現(xiàn)在它幫助學(xué)生通過辨析明

21、確了在研究因數(shù)和倍數(shù)時(shí),我們所說的數(shù)都是指整數(shù)(一般不包括0),及時(shí)彌補(bǔ)了未進(jìn)行整除概念教學(xué)的知識(shí)缺陷,還通過此題對(duì)“因數(shù)”與乘法算式名稱中的“因數(shù)”,倍數(shù)與倍進(jìn)行了對(duì)比。倍數(shù)和因數(shù)數(shù)學(xué)教學(xué)反思8總的感覺是上好一堂課不容易。當(dāng)確定好內(nèi)容后,我和吳艷、顧志成三人各自備課,第二天放學(xué)后化了整整一個(gè)半小時(shí)討論教案,后又幾經(jīng)修改,但總感到時(shí)間來不及。倍數(shù)和因數(shù)是學(xué)生聞所未聞的兩個(gè)新概念,是純知識(shí)性的內(nèi)容,學(xué)起來比較枯燥。如何使學(xué)生通過四十分鐘愉快輕松的學(xué)習(xí)掌握這乏味的概念性內(nèi)容,如何開頭,各部分之間怎樣銜接,每一個(gè)知識(shí)點(diǎn)采取何種形式呈現(xiàn)、展開,重點(diǎn)如何突出,難點(diǎn)如何突破,那幾天這許多問題始終盤繞在腦海

22、中,課上下來根據(jù)學(xué)生的參與情況,掌握程度可以說達(dá)到了教學(xué)目標(biāo)。我覺得整個(gè)課堂教學(xué)注意了以下幾點(diǎn):1、捕捉生活與數(shù)學(xué)之間的聯(lián)系,幫助學(xué)生理解概念間的關(guān)系。試上下來我感覺學(xué)生對(duì)倍數(shù)因數(shù)間的相互依存關(guān)系理解不到位,看著學(xué)生我突然想到可以利用學(xué)生喬雨雷、喬風(fēng)光兄弟間的關(guān)系呀,于是我把生活中的相互依存關(guān)系遷移到數(shù)學(xué)中的倍數(shù)和因數(shù),這樣設(shè)計(jì)自然又貼切,既讓學(xué)生感受到了數(shù)學(xué)與生活的聯(lián)系,初步學(xué)會(huì)從數(shù)學(xué)的角度去觀察事物、思考問題,激發(fā)對(duì)數(shù)學(xué)的興趣,又幫助學(xué)生理解了倍數(shù)因數(shù)之間的相互依存關(guān)系。2、注意引導(dǎo)學(xué)生進(jìn)行有效的合作學(xué)習(xí)。動(dòng)手實(shí)踐、自主探索、合作交流是新課程倡導(dǎo)的學(xué)習(xí)方式,公開課不管上的什么內(nèi)容,不管有沒

23、有必要往往都要叫學(xué)生討論,看起來熱熱鬧鬧,其實(shí)有多少學(xué)生真正參與了討論。往往是一組中的優(yōu)等生把答案說出,其他學(xué)生洗耳恭聽。當(dāng)3、2、5的倍數(shù)寫出來后,我問:“整體觀察這幾個(gè)數(shù)的倍數(shù),你認(rèn)為一個(gè)數(shù)的倍數(shù)有什么特點(diǎn)?”首先問題有討論的價(jià)值與必要性,其次當(dāng)問題提出后我先讓學(xué)生獨(dú)立思考,看到學(xué)生陸續(xù)舉手時(shí),再組織學(xué)生討論交流,完善自己的想法。(其實(shí)這是我一貫的做法,必須在每個(gè)學(xué)生獨(dú)立思考的基礎(chǔ)上進(jìn)行合作學(xué)習(xí)。)3、內(nèi)容環(huán)環(huán)相扣、過度自然流暢。從生活中的相互依存關(guān)系遷移到數(shù)學(xué)中的倍數(shù)因數(shù),從而揭示課題,引出誰是誰的倍數(shù),誰是誰的因數(shù),到找一個(gè)數(shù)的倍數(shù)或因數(shù),歸納找的方法。整個(gè)教學(xué)過程環(huán)環(huán)緊扣、一氣呵成,

24、通達(dá)順暢。4、練習(xí)設(shè)計(jì)由易到難,由淺入深,既鞏固了新知,又發(fā)展了思維?!罢遗笥选庇螒?,答案不唯一,學(xué)生思考問題的空間很大,培養(yǎng)了學(xué)生的發(fā)散思維能力。讓學(xué)生判斷自己的學(xué)號(hào)數(shù)是哪些數(shù)的倍數(shù),老師手里拿了2、3、5幾張數(shù)字卡片,老師出示卡片,如果學(xué)生的學(xué)號(hào)數(shù)是老師出示卡片的倍數(shù)就可以站起來。最后留下了學(xué)號(hào)是1、7、11、13、17、19、23、29、31、37、41、43、47的學(xué)生,讓學(xué)生想辦法如果他們也要站起來,老師出示的卡片上應(yīng)是幾?學(xué)生面對(duì)問題積極思考,享受了數(shù)學(xué)思維的快樂。疑問:一開始的擺12個(gè)小正方形拼成長方形,得出三個(gè)積是12的乘法算式,我想這里的操作可否省去?一方面用去時(shí)間較多,對(duì)教

25、學(xué)內(nèi)容關(guān)系不大,如果說是培養(yǎng)操作能力也不是在這個(gè)時(shí)候。另一方面這堂課練習(xí)時(shí)間比較少,擠出的時(shí)間可用于練習(xí)。我想如果我們每堂課都能精心設(shè)計(jì)的話,對(duì)學(xué)生對(duì)我們教師都會(huì)有很大的提高。倍數(shù)和因數(shù)數(shù)學(xué)教學(xué)反思9因數(shù)和倍數(shù)是一節(jié)數(shù)學(xué)概念課,人教版新教材在引入因數(shù)和倍數(shù)的概念時(shí)與以往的教材有所不同。在以往的教材中,都是通過除法算式來引出整除的概念,每個(gè)除法算式對(duì)應(yīng)著一對(duì)有整除關(guān)系的數(shù),如b÷ac,表示b能被a整除,b÷ca,表示b能被c整除。在此基礎(chǔ)上再引出因數(shù)和倍數(shù)的概念。而現(xiàn)在的人教版教材中沒有用數(shù)學(xué)語言給“整除”下定義,而是利用一個(gè)簡單的實(shí)物圖(2行飛機(jī),每行6架)引出一個(gè)乘法算式

26、2×612,通過這個(gè)乘法算式直接給出因數(shù)和倍數(shù)的概念。我覺得這部分內(nèi)容學(xué)生初次接觸,對(duì)于學(xué)生來說是比較難掌握的內(nèi)容。尤其對(duì)因數(shù)和倍數(shù)和是一對(duì)相互依存的概念,不能單獨(dú)存在,不是很好理解。我通過捕捉生活與數(shù)學(xué)之間的聯(lián)系,幫助學(xué)生理解因數(shù)倍數(shù)相互依存的關(guān)系。所以在上課之前我特意和孩子們玩了一個(gè)小游戲。用“我和誰是好朋友”這句話來理解相互依存的意思。即“我是誰的好朋友”,“誰是我的好朋友”,而不能說“我是好朋友”。學(xué)生對(duì)相互依存理解了,在描述因數(shù)和倍數(shù)的概念時(shí)就不會(huì)說錯(cuò)了。對(duì)于這節(jié)課的教學(xué),我特別注意下面幾個(gè)細(xì)節(jié)來幫助學(xué)生理解因數(shù)和倍數(shù)的概念。一是教材雖然不是從過去的整除定義出發(fā),而是通過一

27、個(gè)乘法算式來引出因數(shù)和倍數(shù)的概念,但本質(zhì)上任是以“整除”為基礎(chǔ)。所以我上課時(shí)特別注意讓學(xué)生明白什么情況下才能討論因數(shù)和倍數(shù)的概念。我舉了一些反例加以說明。二是要學(xué)生注意區(qū)分乘法算式中的“因數(shù)”和本單元中的“因數(shù)”的聯(lián)系和區(qū)別。在同一個(gè)乘法算式中,兩者都是指乘號(hào)兩邊的整數(shù),但前者是相對(duì)于“積”而言的,與“乘數(shù)”同義,可以是小數(shù),而后者是相對(duì)于“倍數(shù)”而言的,兩者都只能是整數(shù)。三是要注意區(qū)分“倍數(shù)”與前面學(xué)過的“倍”的聯(lián)系與區(qū)別?!氨丁钡母拍畋取氨稊?shù)”要廣。可以說“15是3的5倍”,也可以說“1.5是0.3的5倍”,但我們只能說“15是3的倍數(shù)”,卻不能說“1.5是0.3的倍數(shù)”。我在課堂上反復(fù)強(qiáng)

28、調(diào),幫助孩子們認(rèn)真理解辨析,所以學(xué)生一節(jié)課下來對(duì)這組概念就理解透徹了,不會(huì)模糊了。倍數(shù)和因數(shù)數(shù)學(xué)教學(xué)反思10這節(jié)課我在教學(xué)中充分體現(xiàn)以學(xué)生為主體,為學(xué)生的探究發(fā)現(xiàn)提供足夠的時(shí)空和適當(dāng)?shù)闹笇?dǎo),同時(shí),也為提高課堂教學(xué)的有效性,我在本課的教學(xué)中體現(xiàn)了自主化、活動(dòng)化、合作化和情意化,具體做到了以下幾點(diǎn):一、尊重教材,引導(dǎo)學(xué)生實(shí)現(xiàn)從形象向抽象的飛躍。教材中首先引導(dǎo)學(xué)生理解數(shù)與數(shù)之間的關(guān)系,進(jìn)而用乘法算式把不同的列法表示出來,再根據(jù)乘法算式教學(xué)倍數(shù)和因數(shù)的意義。這部分內(nèi)容學(xué)生初次接觸,對(duì)于學(xué)生來說是比較難掌握的內(nèi)容。首先是名稱比較抽象,在現(xiàn)實(shí)生活中又不經(jīng)常接觸,對(duì)這樣的概念教學(xué),要想讓學(xué)生真正理解、掌握、

29、判斷,需要一個(gè)長期的消化理解的過程。這節(jié)課我在教學(xué)中充分體現(xiàn)以學(xué)生為主體,為學(xué)生的探究發(fā)現(xiàn)提供足夠的時(shí)空和適當(dāng)?shù)闹笇?dǎo),同時(shí),也為提高課堂教學(xué)的有效性,我在本課的教學(xué)中體現(xiàn)了自主化、活動(dòng)化、合作化和情意化,二、細(xì)化過程,讓學(xué)生在充分交流中感悟理解倍數(shù)和因數(shù)的意義。倍數(shù)和因數(shù)的意義是本單元的重要知識(shí),其他內(nèi)容的教學(xué)都以此為基礎(chǔ)。在學(xué)生得出乘法算式后,首先引導(dǎo)學(xué)生觀察3×4=12這道算式,邊指著算式邊先介紹“12是3的倍數(shù)”,然后啟發(fā)學(xué)生“看著算式你還能想到什么?”很多學(xué)生已經(jīng)領(lǐng)會(huì)12也是4的倍數(shù),指名說后,再強(qiáng)化一下讓學(xué)生連起來說說誰是誰的倍數(shù)。接著教學(xué)“3是12的因數(shù)”,再啟發(fā)“這時(shí)你

30、又能想到什么?”學(xué)生很容易聯(lián)想到“4也是12的因數(shù)”,而且學(xué)生的學(xué)習(xí)興趣濃厚、求知欲強(qiáng)。這時(shí)再讓學(xué)生完整的說一說誰是誰的倍數(shù),誰是誰的因數(shù),已經(jīng)“水到渠成”。在初步感受倍數(shù)和因數(shù)的意義是與乘法有聯(lián)系的,表達(dá)的是自然數(shù)之間的關(guān)系之后,接著練一練讓學(xué)生根據(jù)2×6=12先同桌互相說說哪個(gè)數(shù)是哪個(gè)數(shù)的倍數(shù)(或因數(shù)),在全班交流。最后根據(jù)1×12=12先指名說一說哪個(gè)數(shù)是哪個(gè)數(shù)的倍數(shù)(或因數(shù)),再讓學(xué)生輕聲地說說有點(diǎn)特別的兩句。整個(gè)過程處理細(xì)致、層次清晰、有扶有放,生生交流、師生交流充分,反饋及時(shí)、兼顧學(xué)困生,讓學(xué)生在遷移中理解倍數(shù)和因數(shù)的意義。三、由點(diǎn)及面,巧架平臺(tái),讓學(xué)生在師生互

31、動(dòng)中建立完整的數(shù)學(xué)模型。找一個(gè)數(shù)的倍數(shù)或因數(shù),既能鞏固倍數(shù)和因數(shù)的意義,也為研究倍數(shù)的特征及意義作準(zhǔn)備。探索找一個(gè)數(shù)的倍數(shù)或因數(shù)的方法時(shí),重點(diǎn)是幫助學(xué)生建立相應(yīng)的數(shù)學(xué)模型。探索求一個(gè)數(shù)因數(shù)的方法是本課的難點(diǎn),例題直接安排找24的因數(shù)更是困難。教學(xué)中我還是利用3×4=12做鋪墊,引導(dǎo)學(xué)生先找一找12的因數(shù),初步感知了找因數(shù)的方法。然后層層推進(jìn),先讓學(xué)生想一道算式找24的因數(shù),引出根據(jù)除法找因數(shù)的方法,再讓學(xué)生按除法通過自主探究找出24的所有因數(shù),接著組織學(xué)生比較、討論、優(yōu)化提升出找一個(gè)數(shù)的因數(shù)的方法。教學(xué)4的倍數(shù)時(shí),學(xué)生在4×4=16的鋪墊下,很容易找到一個(gè)或幾個(gè)4的倍數(shù),但

32、是想要“一個(gè)不漏且有序的找全,并體會(huì)出4的倍數(shù)的個(gè)數(shù)是無限的”卻很難。如何引導(dǎo)學(xué)生建構(gòu)完整的倍數(shù)的數(shù)學(xué)模型呢?我遵循學(xué)生的認(rèn)知規(guī)律,然后引導(dǎo)學(xué)生按從小到大的順序整理,接著向兩頭延伸:有比4更小的嗎?接著4×2=8,4×3=12,4×4=16,像這樣說下去說得完嗎?4的倍數(shù)的特點(diǎn)逐步在學(xué)生的腦海中得以完善、合理建構(gòu)。這樣搭建了有效的平臺(tái)、形成了師生互動(dòng)生成的過程,學(xué)生經(jīng)歷了無序、不完整逐步由點(diǎn)及面向有序、完整的思維邁進(jìn),有效的建構(gòu)了數(shù)學(xué)模型。倍數(shù)和因數(shù)數(shù)學(xué)教學(xué)反思11本節(jié)課是第二單元的第一課時(shí),第二單元的教學(xué)內(nèi)容較為抽象,很難結(jié)合生活實(shí)例或具體情境來進(jìn)行教學(xué),學(xué)生理

33、解起來有一定的難度。加強(qiáng)對(duì)概念間相互關(guān)系的梳理,引導(dǎo)學(xué)生從本質(zhì)上理解概念,避免死記硬背。還有要引導(dǎo)學(xué)生用聯(lián)系的觀點(diǎn)去掌握這些知識(shí),而不是機(jī)械地記憶一堆支離破碎、毫無關(guān)聯(lián)的概念和結(jié)論。今天這節(jié)課的教學(xué)的倍數(shù)和因數(shù)是講述兩個(gè)數(shù)之間的一種相互依存關(guān)系,于是我利用課前談話讓學(xué)生在找找生活中的相互依存關(guān)系,課中遷移到數(shù)學(xué)中的倍數(shù)和因數(shù),這樣設(shè)計(jì)自然又貼切,既讓學(xué)生感受到了數(shù)學(xué)與生活的聯(lián)系,初步學(xué)會(huì)從數(shù)學(xué)的角度去觀察事物、思考問題,激發(fā)對(duì)數(shù)學(xué)的興趣,又幫助學(xué)生理解了倍數(shù)因數(shù)之間的相互依存關(guān)系。然后我讓學(xué)生根據(jù)情境列出乘法算式,初步感知倍數(shù)關(guān)系的存在,從而引出倍數(shù)和因數(shù)的概念,并為下面學(xué)習(xí)如何找一個(gè)數(shù)的倍數(shù)

34、奠定了良好的基礎(chǔ)。同時(shí),我還出示了一個(gè)除法的算式,讓學(xué)生來找找倍數(shù)和因數(shù)的關(guān)系,這樣不僅溝通了乘法和除法的關(guān)系,也讓學(xué)生很容易感悟到不管是根據(jù)乘法還是除法算式都可以找到因數(shù)和倍數(shù)。找出一個(gè)數(shù)的因數(shù)要做到不重復(fù)和不遺漏,有些學(xué)生還不能找全,沒有掌握方法,我在今后的教學(xué)中還要注意對(duì)學(xué)困生的輔導(dǎo)。倍數(shù)和因數(shù)數(shù)學(xué)教學(xué)反思12一、單元主題圖體驗(yàn)數(shù)學(xué)化過程。單元主題圖是教材中的一個(gè)重要內(nèi)容,它是選擇某一個(gè)主題構(gòu)建的一幅情境圖,本單元就出現(xiàn)了“數(shù)的世界”單元主題圖。在教學(xué)中,我是從培養(yǎng)學(xué)生的問題意識(shí)出發(fā)來組織教學(xué)的,首先讓學(xué)生獨(dú)立觀察主題圖,通過獨(dú)立思考提出問題;然后讓孩子們通過小組合作,共享學(xué)習(xí)的成果;最

35、后通過解決問題,體驗(yàn)獲取知識(shí)的過程。教學(xué)中學(xué)生不僅很快找到了整數(shù)、小數(shù)、負(fù)數(shù),而且也找到了橙子賣完了用“0”表示,圖中有一個(gè)凳子、一張桌子用“1”表示,更多的是學(xué)生提出了很多的數(shù)學(xué)問題,如我有50元可以買多少千克蘋果?學(xué)生真正是在自主學(xué)習(xí)的過程中提出問題、解決問題,體驗(yàn)“數(shù)學(xué)化”的過程。二、數(shù)形結(jié)合實(shí)現(xiàn)有意義建構(gòu)。教材中對(duì)因數(shù)概念的認(rèn)識(shí),設(shè)計(jì)了“用小正方形拼長方形”的操作活動(dòng),引導(dǎo)學(xué)生在方格紙上畫一畫,寫出乘法算式,再與同學(xué)進(jìn)行交流。在思考“哪幾種拼法”時(shí),借助“拼小正方形”的活動(dòng),使數(shù)與形有機(jī)地結(jié)合,防止學(xué)生進(jìn)行“機(jī)械地學(xué)習(xí)”;學(xué)生對(duì)因數(shù)和理解不僅是數(shù)字上的認(rèn)識(shí),而且能與操作活動(dòng)與圖形描述聯(lián)

36、系起來,促進(jìn)了學(xué)生的有意義建構(gòu),這是一個(gè)“先形后數(shù)”的過程,是一個(gè)知識(shí)抽象的過程。三、探索活動(dòng)關(guān)注解決問題的策略。學(xué)生在探索活動(dòng)中,運(yùn)用做記號(hào)、列表格、畫示意圖等解決問題的策略來發(fā)現(xiàn)規(guī)律和特征,在探究的過程中,體會(huì)觀察、分析、歸納、猜想、驗(yàn)證等過程,孩子們學(xué)會(huì)了思考,初步形成了解決問題的一些基本策略。四、困惑:1、第一次真正開始教北師大教材,最大的感覺是教學(xué)的空間真的擴(kuò)大了,課堂活躍了,但是同時(shí)給學(xué)生進(jìn)行課后輔導(dǎo)的時(shí)間也增加了,每節(jié)課從學(xué)生的反饋看來,卻有相當(dāng)一部分的學(xué)生存在各種問題,教材中太缺乏那些能讓他們成功的“基礎(chǔ)性”題目,整個(gè)一個(gè)單元只有一個(gè)練習(xí)一,那六道題目真的能解決問題嗎?能否多給

37、孩子們一些選擇。2、不太明白為什么一定要使用“因數(shù)”這個(gè)概念,比較“因數(shù)公因數(shù)最大公因數(shù)約分”和“約數(shù)公約數(shù)最大公約數(shù)約分”,總覺得后者容易接受吧。這一改好像我們還得教學(xué)生家長,就真的有學(xué)生家長投訴說“老師啊,你教錯(cuò)了,那不是因數(shù),是約數(shù)”,讓人哭笑倍數(shù)和因數(shù)數(shù)學(xué)教學(xué)反思13簡單的內(nèi)容中蘊(yùn)藏著復(fù)雜的關(guān)系,由于新教材把“整除”的概念去掉,再也不提誰被誰整除,而改成借助整除模式na=b,直接引出因數(shù)和倍數(shù)的概念,這部分內(nèi)容顯得比較容易了,學(xué)生在學(xué)因數(shù)時(shí),對(duì)于求一個(gè)數(shù)的因數(shù),及理解一個(gè)數(shù)的因數(shù)最小是1,最大因數(shù)是它本身,及一個(gè)數(shù)的因數(shù)的個(gè)數(shù)是有限的,感覺很清楚,明白。在學(xué)倍數(shù)時(shí),對(duì)求一個(gè)數(shù)的倍數(shù)及理

38、解一個(gè)數(shù)的倍數(shù)中最小的是它本身,沒有最大的倍數(shù)也認(rèn)為容易簡單,但有關(guān)因數(shù)、倍數(shù)的綜合練習(xí)不少學(xué)生開始猶豫、混淆。如判斷一個(gè)數(shù)的因數(shù)的個(gè)數(shù)是無限的,不少學(xué)生判斷為對(duì)。練習(xí)中:18是的倍數(shù),個(gè)別學(xué)生選擇了18、36、54。針對(duì)這種情況,我調(diào)整了練習(xí),組織學(xué)生研究了以下幾個(gè)問題:1、寫出12的因數(shù)和倍數(shù),寫出16的因數(shù)和倍數(shù)。2、觀察比較,會(huì)打消列問題:一個(gè)數(shù)的因數(shù)和它本身的關(guān)系,3、為什么一個(gè)數(shù)的因數(shù)的個(gè)數(shù)是有限的?最小是1,最大是它本身,也就是1和它本身之間的整數(shù)。為什么一個(gè)數(shù)的倍數(shù)的個(gè)數(shù)是無限的?最小是它本身,沒有最大的。通過對(duì)這幾個(gè)問題的討論,多數(shù)學(xué)生較好的區(qū)分了一個(gè)數(shù)的因數(shù)和倍數(shù)倍數(shù)和因數(shù)

39、數(shù)學(xué)教學(xué)反思14因數(shù)和倍數(shù)是一節(jié)概念課。教學(xué)時(shí)我首先以拼圖比賽為素材,讓學(xué)生動(dòng)手操作快速把12個(gè)小正方形擺出一個(gè)長方形,再讓學(xué)生用乘法算式表示出所擺的長方形,在交流中得到三種不同的擺法和三種不同的乘法算式。借助乘法算式引出因數(shù)和倍數(shù)的意義,使學(xué)生初步建立了“因數(shù)與倍數(shù)”的概念。 這樣,用學(xué)生已有的數(shù)學(xué)知識(shí)引出了新知識(shí),減緩了難度,這一環(huán)節(jié)的教學(xué),我覺得還是收到了預(yù)設(shè)的效果。能不重復(fù)、不遺漏、有序地找出一個(gè)數(shù)的因數(shù),是本課的教學(xué)難點(diǎn)。在教學(xué)中,我是這樣設(shè)計(jì)的:在根據(jù)1×1212,2×612,3×412三個(gè)乘法算式說出了誰是誰的因數(shù)、誰是誰的倍數(shù)后,我緊接著提問:12的因數(shù)有哪些?學(xué)生看著黑板上的算式很快地找出12的因數(shù),接著再提問:你是用什么方式找到12的因數(shù)的?在學(xué)生說出方法后,為了讓學(xué)生探索出找一個(gè)因數(shù)的方法,我讓學(xué)生自己找一找15的因數(shù)有哪些。預(yù)設(shè)在匯報(bào)時(shí),能借此解決如何有序、不重復(fù)、不遺漏地找出一個(gè)數(shù)的因數(shù)。但在實(shí)際交流時(shí),學(xué)生的方法出現(xiàn)了兩種意見,并且各抒己見,因?yàn)?5的因數(shù)只有兩對(duì),無論怎樣找都不會(huì)遺漏。作為老師,我這時(shí)沒有把我的意見強(qiáng)加給學(xué)生,而是以男女生比賽的形式,讓學(xué)生分別找16、18的所有因數(shù)。由于部分學(xué)生運(yùn)用從小到大一對(duì)一對(duì)地找很快找出這兩個(gè)數(shù)的因數(shù),另一部

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。

評(píng)論

0/150

提交評(píng)論