

版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領
文檔簡介
1、湖南省岳陽市汨羅大荊中學2020-2021學年高二數(shù)學文模擬試題含解析一、 選擇題:本大題共10小題,每小題5分,共50分。在每小題給出的四個選項中,只有是一個符合題目要求的1. 過點(-l,3)且與直線x-2y+3=0平行的直線方程是( )a. x-2y-5=0 b. x-2y+7=0 c. 2x+y-1=0 d. 2x+y-5=0參考答案:b2. 已知是復數(shù)的共軛復數(shù), =0,則復數(shù)z在復平面內對應的點的軌跡是()a圓
2、60; b橢圓 c雙曲線 d拋物線 參考答案:a略3. 設是偶函數(shù),且當時是單調函數(shù),則滿足的所有的和為 ( ) a. b.
3、160; c. d. 參考答案:c4. 已知函數(shù),若,且函數(shù)的所有零點之和為,則實數(shù)a的值為( )a. b. c. d.參考答案:b5. 曲線y=x3
4、+3x2在點(2,4)處的切線方程為()ax=4by=4cx=2dy=2x參考答案:b【考點】利用導數(shù)研究曲線上某點切線方程【分析】根據曲線方程y=x3+3x2,對f(x)進行求導,求出f(x)在x=2處的值即為切線的斜率,曲線又過點(2,4),即可求出切線方程【解答】解:曲線y=x3+3x2,y=3x2+6x,切線方程的斜率為:k=y|x=2=0,又曲線y=x3+3x2過點(2,4)切線方程為:y=4,故選:b6. 在四面體abcd中,已知,是邊長為2的等邊三角形,那么點d到底面abc的距離是( )a1
5、60; b c2 d3參考答案:babac,acbd,abbdb,ac平面abd,平面abc平面abd,取ab中點o,連接do,abd是等邊三角形,doab,do平面abc,又do,d到平面abc的距離是.故選b. 7. 已知函數(shù)的圖象與直線相切于點,則( )a16 b8
6、60; c4 d2參考答案:b,消去得.故選b. 8. 對于每個正整數(shù),拋物線與軸交于兩點,以|表示兩點間的距離,則|+|+|的值是a b c d參考答案:c9. 拋物線的焦點到直線的距離是( )a1 b c .2
7、 d3 參考答案:a10. 已知an是首項為1的等比數(shù)列,sn是an的前n項和,且9s3=s6,則數(shù)列的前5項和為()a或5b或5cd參考答案:c【考點】等比數(shù)列的前n項和;等比數(shù)列的性質【分析】利用等比數(shù)列求和公式代入9s3=s6求得q,進而根據等比數(shù)列求和公式求得數(shù)列的前5項和【解答】解:顯然q1,所以,所以是首項為1,公比為的等比數(shù)列,前5項和故選:c二、 填空題:本大題共7小題,每小題4分,共28分11. 如圖,在開關電路中,開關開或關的概率都為,且是相互獨立的,則燈亮的概率是_ .參考答案:略12. 在abc中,角a,b,c所對的邊分別為a,b,c,abc的面
8、積為4,則c= 參考答案:6【考點】hp:正弦定理【分析】由,可得:ab=c,sinc=代入=4,解得c【解答】解:由,ab=c,sinc=×=4,解得c=6故答案為:613. 正數(shù)滿足,則的最大值為 參考答案: 略14. 完成下面的三段論:大前提:互為共軛復數(shù)的乘積是實數(shù)小前提:與是互為共軛復數(shù)結論:_參考答案:(xyi)·(xyi)是實數(shù)【分析】三段論是由兩個含有一個共同項的性質判斷作前提得出一個新的性質判斷為結論的演繹推理在三段論中,含有大項的前提叫大前提,如
9、本例中的“互為共軛復數(shù)的乘積是實數(shù)”;含有小項的前提叫小前提,如本例中的“x+yi與xyi是互為共軛復數(shù)”另外一個是結論【詳解】由演繹推理三段論可得“三段論”推理出一個結論,則這個結論是:“(x+yi)(xyi)是實數(shù),故答案為:(x+yi)(xyi)是實數(shù)【點睛】三段論推理是演繹推理中的一種簡單判斷推理它包含兩個性質判斷構成的前提,和一個性質判斷構成的結論一個正確的三段論有僅有三個詞項,其中聯(lián)系大小前提的詞項叫中項;出現(xiàn)在大前提中,又在結論中做謂項的詞項叫大項;出現(xiàn)在小前提中,又在結論中做主項的詞項叫小項15. 函數(shù)的圖象在點處的切線為_參考答案:【分析】求出原函數(shù)的導函數(shù),得到f(0)為切
10、線斜率,再求得f(0),即可求解切線方程【詳解】f(x)exx2,f(x)ex2x,kf(0)1,又切點坐標為(0,1),函數(shù)f(x)exx2圖象在點(0,f(0)處的切線方程是y1x0,即x- y+1=0故答案為:x- y+1=0【點睛】本題考查了利用導數(shù)研究在曲線上某點處的切線方程,在曲線上某點的切線的斜率,就是函數(shù)在該點處的導數(shù)值,是中檔題16. “”是“”的_條件。(填充要,充分不必要,必要不充分,既不充分又不必要)參考答案:充分不必要17. 設函數(shù),觀察:根據以上事實,由歸納推理可得:當且時,
11、0; . 參考答案:略三、 解答題:本大題共5小題,共72分。解答應寫出文字說明,證明過程或演算步驟18. 方程中的,且互不相同,在所有這些方程表示的直線中,求不同的直線共有多少條.參考答案:解:有0時,, 無0時, ,一共186種 略19. (12分)對于任意正整數(shù)n,猜想2n1與(n+1)2的大小關系,并給出證明參考答案:時,; 2分時,;時,猜想時, 4分證明:當時,由以上知結論成立;假設當時,則時,而,因為,故,所以,即,即,即時,結論成立,由,知
12、,對任意,結論成立20. (本題滿分12分)如圖所示,過點作圓的割線,交圓于兩點。(1)求線段ab的中點p的軌跡;(2)在線段ab上取一點q,使,求點q的軌跡. 參考答案:(1)圓c的方程為,其圓心為c(3,2),半徑為2.又,設p點坐標(x,y),則cp的斜率為,mp的斜率為,所以,化簡得。點c(3,2)應在軌跡上,而x=3時,y=2滿足方程,所以點p的的軌跡是圓在已知圓內的一段弧。(2)設,直線ab的斜率為k,則有 , 代入,有, 即,把
13、代入,得 , ,代入并化簡得,而,從而有,所以點q的軌跡是直線的圓內部分。 略21. 我國是世界上嚴重缺水的國家之一,城市缺水問題較為突出某市政府為了鼓勵居民節(jié)約用水,計劃調整居民生活用水收費方案,擬確定一個合理的月用水量標準x(噸),一位居民的月用水量不超過x的部分按平價收費,超出x的部分按議價收費為了了解居民用水情況,通過抽樣,獲得了某年100位居民每人的月均用水量(單位:噸),將數(shù)據按照0,0.5),0.5,1),4,4.5)分成9組,制成了如圖所示的頻率分布直方圖(1)
14、求直方圖中a的值;(2)若該市有110萬居民,估計全市居民中月均用水量不低于3噸的人數(shù),請說明理由;(3)估計居民月均用水量的中位數(shù)(精確到0.01)參考答案:【考點】頻率分布直方圖【分析】(1)由各組頻率和為1,列出方程求出a的值;(2)由題意計算不低于3噸的頻率與頻數(shù)即可;(3)利用中位數(shù)兩邊的頻率相等,列出方程求出中位數(shù)的值【解答】解:(1)由概率統(tǒng)計相關知識,各組頻率之和的值為1,得0.5×(0.08+0.16+0.3+a+0.52+0.3+0.12+0.08+0.04)=1,解得a=0.4;(2)由題中統(tǒng)計圖可得,不低于3噸的人數(shù)所占比例為0.5×(0.12+0.08+0.04)=12%,全市月均用水量不低于3噸的人數(shù)為110×0.12=13.2(萬);(3)設中位數(shù)為x,則有0.5×(0.08+0.16+0.3+0.4)+0.52×(x2)=0.5,解得x2.06,估計中位數(shù)是2.0622. 已知實數(shù)x,y滿足約束條件:()請畫出可行域,并求z=的最小值;()若z=x+ay取最小值的最優(yōu)解有無窮多個,求實數(shù)a的值參考答案:【考點】簡單線性規(guī)劃【分析】(i)先根據約束條件畫出可行域,z=,利用z的幾何意義求最值,只需求出何時
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
- 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
- 6. 下載文件中如有侵權或不適當內容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 公司轉讓股權合同
- 工地設備機械施工合同書
- 2025年寧波從業(yè)資格證應用能力考些啥
- 《數(shù)據可視化技術應用》2.3剖析用戶購買行為數(shù)據-教案
- 簡單版本的加工承攬合同6篇
- 工作室租房合同7篇
- 《愛心行動-圖形與拼組》作業(yè)設計方案
- 水力學模擬考試題與參考答案
- 電工崗位試題庫及參考答案
- 個人工作計劃周工作計劃
- 2025年第六屆(中小學組)國家版圖知識競賽測試題庫及答案
- GB/T 26436-2025禽白血病診斷技術
- 體育場館工程施工組織設計
- 春季校園常見傳染病及預防措施培訓課件
- 國際標準下的AI技術應用-深度研究
- 2025-2030年城市軌道交通運營行業(yè)深度調研及發(fā)展戰(zhàn)略咨詢報告
- 2025年江西生物科技職業(yè)學院高職單招職業(yè)技能測試近5年常考版參考題庫含答案解析
- 《信息技術(拓展模塊)》高職全套教學課件
- 2025天津市安全員《B證》考試題庫
- DB37T-住宅小區(qū)供配電設施建設標準編制說明
- 2025年河北省職業(yè)院校技能大賽高職組(商務數(shù)據分析賽項)參考試題庫(含答案)
評論
0/150
提交評論