




下載本文檔
版權(quán)說(shuō)明:本文檔由用戶(hù)提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡(jiǎn)介
1、 中國(guó)領(lǐng)先的中小學(xué)教育品牌精銳教育學(xué)科教師輔導(dǎo)講義講義編號(hào)11sh11sx00學(xué)員編號(hào): 年 級(jí): 課 時(shí) 數(shù):3學(xué)員姓名: 輔導(dǎo)科目:數(shù)學(xué) 學(xué)科教師: 課 題等比數(shù)列結(jié)論總結(jié)及等差與等比數(shù)列的綜合訓(xùn)練授課日期及時(shí)段 教學(xué)目標(biāo)1、掌握等差數(shù)列與等比數(shù)列的性質(zhì)并會(huì)綜合運(yùn)用;2、靈活運(yùn)用所學(xué)知識(shí)會(huì)解決綜合數(shù)列題;教學(xué)內(nèi)容 性質(zhì)總結(jié):1、 等比數(shù)列的定義:,稱(chēng)為公比。2、通項(xiàng)公式:, 首項(xiàng):;公比:推廣:, 從而得或3、 等比中項(xiàng):(1)如果成等比數(shù)列,那么叫做與的等差中項(xiàng)即:或注意:同號(hào)的兩個(gè)數(shù)才有等比中項(xiàng),并且它們的等比中項(xiàng)有兩個(gè)(兩個(gè)等比中項(xiàng)互為相反數(shù))(2)數(shù)列是等比數(shù)列4、 等比數(shù)列的前n
2、項(xiàng)和公式:(1) 當(dāng)時(shí), (2) 當(dāng)時(shí),(為常數(shù))5、 等比數(shù)列的判定方法:(1)用定義:對(duì)任意的n,都有為等比數(shù)列 (2) 等比中項(xiàng):(0)為等比數(shù)列(3) 通項(xiàng)公式:為等比數(shù)列(4) 前n項(xiàng)和公式:為等比數(shù)列6、等比數(shù)列的證明方法:依據(jù)定義:若或?yàn)榈缺葦?shù)列。7、 注意(1)等比數(shù)列的通項(xiàng)公式及前和公式中,涉及到5個(gè)元素:、及,其中、稱(chēng)作為基本元素。只要已知這5個(gè)元素中的任意3個(gè),便可求出其余2個(gè),即知3求2。(2)為減少運(yùn)算量,要注意設(shè)項(xiàng)的技巧,一般可設(shè)為通項(xiàng);如奇數(shù)個(gè)數(shù)成等差,可設(shè)為,(公比為,中間項(xiàng)用表示);8、 等比數(shù)列的性質(zhì):(1) 當(dāng)時(shí)等比數(shù)列通項(xiàng)公式是關(guān)于n的帶有系數(shù)的類(lèi)指數(shù)函
3、數(shù),底數(shù)為公比前n項(xiàng)和,系數(shù)和常數(shù)項(xiàng)是互為相反數(shù)的類(lèi)指數(shù)函數(shù),底數(shù)為公比(2) 對(duì)任何m,n,在等比數(shù)列中,有,特別的,當(dāng)m=1時(shí),便得到等比數(shù)列的通項(xiàng)公式.因此,此公式比等比數(shù)列的通項(xiàng)公式更具有一般性。(3) 若m+n=s+t (m, n, s, t),則.特別的,當(dāng)n+m=2k時(shí),得注:(4) 列,為等比數(shù)列,則數(shù)列, (k為非零常數(shù)) 均為等比數(shù)列.(5) 數(shù)列為等比數(shù)列,每隔k(k)項(xiàng)取出一項(xiàng)()仍為等比數(shù)列(6) 如果是各項(xiàng)均為正數(shù)的等比數(shù)列,則數(shù)列是等差數(shù)列(7) 若為等比數(shù)列,則數(shù)列,成等比數(shù)列(8) 若為等比數(shù)列,則數(shù)列, , 成等比數(shù)列。(9) 當(dāng)時(shí), 當(dāng)時(shí),, 當(dāng)q=1時(shí),
4、該數(shù)列為常數(shù)列(此時(shí)數(shù)列也為等差數(shù)列); 當(dāng)q<0時(shí),該數(shù)列為擺動(dòng)數(shù)列.(10)在等比數(shù)列中, 當(dāng)項(xiàng)數(shù)為2n (n)時(shí),. (11)若是公比為q的等比數(shù)列,則。典型例題:例1、數(shù)列an的前n項(xiàng)和為Sn,數(shù)列bn中,b1=a1,bn=anan1(n2),若an+Sn=n。(1)設(shè)cn=an1,求證:數(shù)列cn是等比數(shù)列;(2)求數(shù)列bn的通項(xiàng)公式.例2、設(shè)數(shù)列an、bn(bn0,n*),滿足an(n*),證明:an為等差數(shù)列的充要條件是bn為等比數(shù)列。例3、已知數(shù)列an中,a1=,a2=并且數(shù)列l(wèi)og2(a2),log2(a3),log2(an+1)是公差為1的等差數(shù)列,而a2,a3,an+
5、1是公比為的等比數(shù)列,求數(shù)列an的通項(xiàng)公式。例4、在等比數(shù)列an(nN*)中,a11,公比q0.設(shè)bn=log2an,且b1+b3+b5=6,b1b3b5=0.(1)求證:數(shù)列bn是等差數(shù)列;(2)求bn的前n項(xiàng)和Sn及an的通項(xiàng)an;(3)試比較an與Sn的大小.例5、數(shù)列是等差數(shù)列,公差,其中部分項(xiàng)不改變?cè)瓉?lái)的順序組成的數(shù)列:是等比數(shù)列.若,求。例6、已知數(shù)列的首項(xiàng)為1,前項(xiàng)和為,且滿足,數(shù)列滿足. (1) 求數(shù)列的通項(xiàng)公式;(2) 當(dāng)時(shí),試比較與的大小,并說(shuō)明理由.課后練習(xí):1、等比數(shù)列an的公比為q,則“q1”是“對(duì)于任意自然數(shù)n,都有an+1an”的 ( )A.充分不必要條件B.必要
6、不充分條件C.充要條件D.既不充分又不必要條件2、已知數(shù)列an滿足an+2=an(nN*),且a1=1,a2=2,則該數(shù)列前2002項(xiàng)的和為 ( )A.0 B.3 C.3 D.13、若關(guān)于x的方程x2x+a=0和x2x+b=0(ab)的四個(gè)根可組成首項(xiàng)為的等差數(shù)列,則a+b的值是( )A. B. C. D.4、等差數(shù)列an中,a1=2,公差不為零,且a1,a3,a11恰好是某等比數(shù)列的前三項(xiàng),那么該等比數(shù)列公比的值等于_。5、已知an是等比數(shù)列,a1=2,a3=18;bn是等差數(shù)列,b1=2,b1+b2+b3+b4=a1+a2+a320。(1)求數(shù)列bn的通項(xiàng)公式;(2)求數(shù)列bn的前n項(xiàng)和Sn的公式
溫馨提示
- 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶(hù)所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶(hù)上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶(hù)上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶(hù)因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 度校企合作合同書(shū)(三):人才培養(yǎng)與交流
- 兒童健康食品供應(yīng)合同
- 醫(yī)療中心服務(wù)合同樣本
- 環(huán)保工程項(xiàng)目?jī)?nèi)部承包合同范本
- 北京市全日制用工勞動(dòng)合同模板
- 標(biāo)準(zhǔn)版租賃與購(gòu)銷(xiāo)合同范本
- 雙方合作經(jīng)營(yíng)合同示范文本
- 城市住宅房屋買(mǎi)賣(mài)合同范本
- 文化機(jī)械產(chǎn)品用戶(hù)體驗(yàn)評(píng)估方法考核試卷
- 工業(yè)機(jī)器人協(xié)作機(jī)器人技術(shù)考核試卷
- 2024新版(外研版三起joinin)三年級(jí)英語(yǔ)上冊(cè)單詞帶音標(biāo)
- 紡織服裝面料創(chuàng)意設(shè)計(jì)
- 四川義務(wù)教育三年級(jí)生命生態(tài)與安全教案下冊(cè)
- 汽車(chē)保險(xiǎn)與理賠課件 3.4認(rèn)識(shí)新能源汽車(chē)車(chē)上人員責(zé)任保險(xiǎn)
- 物業(yè)公司市場(chǎng)拓展全員營(yíng)銷(xiāo)激勵(lì)方案
- EPC總承包項(xiàng)目工程設(shè)計(jì)各階段的服務(wù)承諾
- 2024-2030年中國(guó)達(dá)克羅行業(yè)運(yùn)行態(tài)勢(shì)與前景展望分析報(bào)告
- 2024-2025學(xué)年初中信息技術(shù)(信息科技)七年級(jí)下冊(cè)甘教版教學(xué)設(shè)計(jì)合集
- 2024年安徽省文化和旅游行業(yè)職業(yè)技能大賽(導(dǎo)游賽項(xiàng))考試題庫(kù)(含答案)
- 小學(xué)一年級(jí)綜合實(shí)踐活動(dòng)第四單元課件《書(shū)包》
- DB13-T 6002-2024 應(yīng)急科普教育場(chǎng)館建設(shè)規(guī)范
評(píng)論
0/150
提交評(píng)論