因式分解(競(jìng)賽題)不含答案(共6頁(yè))_第1頁(yè)
因式分解(競(jìng)賽題)不含答案(共6頁(yè))_第2頁(yè)
因式分解(競(jìng)賽題)不含答案(共6頁(yè))_第3頁(yè)
因式分解(競(jìng)賽題)不含答案(共6頁(yè))_第4頁(yè)
因式分解(競(jìng)賽題)不含答案(共6頁(yè))_第5頁(yè)
已閱讀5頁(yè),還剩2頁(yè)未讀, 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡(jiǎn)介

1、精選優(yōu)質(zhì)文檔-傾情為你奉上因式分解1、公式法序號(hào)公式記憶特征1x2+(a + b)x+ab = (x+a)(x+b) (十字相乘法)(1) 常數(shù)項(xiàng)兩數(shù)積(2) 一次項(xiàng)系數(shù)兩數(shù)和(3) 二次項(xiàng)系數(shù)為12a2-b2 = (a-b)(a+b)(平方差公式)3a2+2ab+b2 = (a+b)2 a2-2ab+b2 = (a-b)2(完全平方公式)4a2+b2+c2+2ab+2ac+2bc = (a+b+c)2(完全平方公式擴(kuò)展)(1) 三數(shù)平方和(2) 兩兩積的2倍5a3+3a2b+3ab2+b3 = (a+b)3a3-3a2b-3ab2+b3 = (a-b)3(完全立方公式)對(duì)照完全平方公式相互加

2、強(qiáng)記憶6a3+b3 = (a+b)(a2-ab+b2)a3-b3 = (a-b)(a2+ab+b2)(1) 近似完全平方公式(2) 缺項(xiàng)之完全立方公式(a+b)(a+b)2-3ab=(a+b)3-3ab(a+b)(a-b)(a+b)2+3ab=(a-b)3+3ab(a+b)7a3+b3+c3-3abc = (a+b+c)(a2+b2+c2-ab-ac-bc)對(duì)照公式4相互加強(qiáng)記憶8an-bn = (a-b)(an-1+an-2b+an-3b2+abn-2+bn-1) n=整數(shù)(平方差公式擴(kuò)展)(1) 短差長(zhǎng)和;(2) a指數(shù)逐項(xiàng)遞減1;(3) b指數(shù)逐項(xiàng)遞增1;(4) 長(zhǎng)式每項(xiàng)指數(shù)和恒等于 n

3、-1。9an-bn = (a+b)(an-1-an-2b+an-3b2-+abn-2-bn-1) n=偶數(shù)(立方差公式擴(kuò)展)(1) 短式變加長(zhǎng)式加減相間;(2) a指數(shù)逐項(xiàng)遞減1;(3) b指數(shù)逐項(xiàng)遞增1;(4) 每項(xiàng)符號(hào)b指數(shù)決定偶加奇減。10an+bn = (a+b)(an-1-an-2b+an-3b2-+abn-2-bn-1) n=奇數(shù)(立方和公式擴(kuò)展)對(duì)比公式9的異同運(yùn)用公式法分解因式時(shí),要根據(jù)多項(xiàng)式的特點(diǎn),根據(jù)字母、系數(shù)、指數(shù)、符號(hào)等正確恰當(dāng)?shù)剡x擇公式例1 分解因式:(1)-2x5n-1yn+4x3n-1yn+2-2xn-1yn+4; (2)x3-8y3-z3-6xyz;例2 分解因

4、式:a3+b3+c3-3abc說明本題實(shí)際上就是用因式分解的方法證明前面給出的公式(6)公式(6)是一個(gè)應(yīng)用極廣的公式,用它可以推出很多有用的結(jié)論,例如:我們將公式(6)變形為a3+b3+c3-3abc顯然,當(dāng)a+b+c=0時(shí),則a3+b3+c3=3abc;當(dāng)a+b+c0時(shí),則a3+b3+c3-3abc0,即a3+b3+c33abc,而且,當(dāng)且僅當(dāng)a=b=c時(shí),等號(hào)成立如果令x=a30,y=b30,z=c30,則有等號(hào)成立的充要條件是x=y=z這也是一個(gè)常用的結(jié)論變式練習(xí) 分解因式:x15+x14+x13+x2+x+12拆項(xiàng)、添項(xiàng)法因式分解是多項(xiàng)式乘法的逆運(yùn)算在多項(xiàng)式乘法運(yùn)算時(shí),整理、化簡(jiǎn)常將

5、幾個(gè)同類項(xiàng)合并為一項(xiàng),或?qū)蓚€(gè)僅符號(hào)相反的同類項(xiàng)相互抵消為零在對(duì)某些多項(xiàng)式分解因式時(shí),需要恢復(fù)那些被合并或相互抵消的項(xiàng),即把多項(xiàng)式中的某一項(xiàng)拆成兩項(xiàng)或多項(xiàng),或者在多項(xiàng)式中添上兩個(gè)僅符合相反的項(xiàng),前者稱為拆項(xiàng),后者稱為添項(xiàng)拆項(xiàng)、添項(xiàng)的目的是使多項(xiàng)式能用分組分解法進(jìn)行因式分解例3 分解因式:x3-9x+8變式練習(xí)1分解因式:(1)x9+x6+x3-3; (2)(m2-1)(n2-1)+4mn;(3)(x+1)4+(x2-1)2+(x-1)4; (4)a3b-ab3+a2+b2+1 3換元法換元法指的是將一個(gè)較復(fù)雜的代數(shù)式中的某一部分看作一個(gè)整體,并用一個(gè)新的字母替代這個(gè)整體來運(yùn)算,從而使運(yùn)算過程簡(jiǎn)

6、明清晰例4 分解因式:(1) (x2+x+1)(x2+x+2)-12 (2) (x2+3x+2)(4x2+8x+3)-90 變式練習(xí)1.分解因式: (x2+4x+8)2+3x(x2+4x+8)+2x24雙十字相乘法分解二次三項(xiàng)式時(shí),我們常用十字相乘法對(duì)于某些二元二次六項(xiàng)式(ax2+bxy+cy2+dx+ey+f),我們也可以用十字相乘法分解因式例如,分解因式2x2-7xy-22y2-5x+35y-3我們將上式按x降冪排列,并把y當(dāng)作常數(shù),于是上式可變形為2x2-(5+7y)x-(22y2-35y+3),可以看作是關(guān)于x的二次三項(xiàng)式對(duì)于常數(shù)項(xiàng)而言,它是關(guān)于y的二次三項(xiàng)式,也可以用十字相乘法,分解

7、為即:-22y2+35y-3=(2y-3)(-11y+1)再利用十字相乘法對(duì)關(guān)于x的二次三項(xiàng)式分解所以,原式=x+(2y-3)2x+(-11y+1) =(x+2y-3)(2x-11y+1)上述因式分解的過程,實(shí)施了兩次十字相乘法如果把這兩個(gè)步驟中的十字相乘圖合并在一起,可得到下圖:它表示的是下面三個(gè)關(guān)系式:(x+2y)(2x-11y)=2x2-7xy-22y2;(x-3)(2x+1)=2x2-5x-3;(2y-3)(-11y+1)=-22y2+35y-3這就是所謂的雙十字相乘法用雙十字相乘法對(duì)多項(xiàng)式ax2+bxy+cy2+dx+ey+f進(jìn)行因式分解的步驟是:(1)用十字相乘法分解ax2+bxy

8、+cy2,得到一個(gè)十字相乘圖(有兩列);(2)把常數(shù)項(xiàng)f分解成兩個(gè)因式填在第三列上,要求第二、第三列構(gòu)成的十字交叉之積的和等于原式中的ey,第一、第三列構(gòu)成的十字交叉之積的和等于原式中的dx例1 分解因式:(1)x2-3xy-10y2+x+9y-2;(2)x2-y2+5x+3y+4;(3)xy+y2+x-y-2;(4)6x2-7xy-3y2-xz+7yz-2z22求根法我們把形如anxn+an-1xn-1+a1x+a0(n為非負(fù)整數(shù))的代數(shù)式稱為關(guān)于x的一元多項(xiàng)式,并用f(x),g(x),等記號(hào)表示,如f(x)=x2-3x+2,g(x)=x5+x2+6,當(dāng)x=a時(shí),多項(xiàng)式f(x)的值用f(a)

9、表示如對(duì)上面的多項(xiàng)式f(x)f(1)=12-3×1+2=0;f(-2)=(-2)2-3×(-2)+2=12若f(a)=0,則稱a為多項(xiàng)式f(x)的一個(gè)根定理1(因式定理) 若a是一元多項(xiàng)式f(x)的根,即f(a)=0成立,則多項(xiàng)式f(x)有一個(gè)因式x-a根據(jù)因式定理,找出一元多項(xiàng)式f(x)的一次因式的關(guān)鍵是求多項(xiàng)式f(x)的根對(duì)于任意多項(xiàng)式f(x) 要求出它的根是沒有一般方法的,然而當(dāng)多項(xiàng)式f(x)的系數(shù)都是整數(shù)時(shí),即整系數(shù)多項(xiàng)式時(shí),經(jīng)常用下面的定理來判定它是否有有理根定理2的根,則必有p是a0的約數(shù),q是an的約數(shù)特別地,當(dāng)a0=1時(shí),整系數(shù)多項(xiàng)式f(x)的整數(shù)根均為an

10、的約數(shù)我們根據(jù)上述定理,用求多項(xiàng)式的根來確定多項(xiàng)式的一次因式,從而對(duì)多項(xiàng)式進(jìn)行因式分解例2 分解因式:x3-4x2+6x-4變式練習(xí)1. 分解因式:9x4-3x3+7x2-3x-23待定系數(shù)法待定系數(shù)法是數(shù)學(xué)中的一種重要的解題方法,應(yīng)用很廣泛,這里介紹它在因式分解中的應(yīng)用在因式分解時(shí),一些多項(xiàng)式經(jīng)過分析,可以斷定它能分解成某幾個(gè)因式,但這幾個(gè)因式中的某些系數(shù)尚未確定,這時(shí)可以用一些字母來表示待定的系數(shù)由于該多項(xiàng)式等于這幾個(gè)因式的乘積,根據(jù)多項(xiàng)式恒等的性質(zhì),兩邊對(duì)應(yīng)項(xiàng)系數(shù)應(yīng)該相等,或取多項(xiàng)式中原有字母的幾個(gè)特殊值,列出關(guān)于待定系數(shù)的方程(或方程組),解出待定字母系數(shù)的值,這種因式分解的方法叫作待

11、定系數(shù)法例3 分解因式:x2+3xy+2y2+4x+5y+3變式練習(xí)1.分解因式:(1)x4-2x3-27x2-44x+7 (2)(x2+xy+y2)-4xy(x2+y2)五、 真題精解:1、已知多項(xiàng)式ax3+bx2+cx+d除以x-1時(shí)的余數(shù)是1,除以x-2時(shí)的余數(shù)是3,那么,它除以(x-1)(x-2)時(shí)所得的余數(shù)是什么?(第12屆“希望杯”試題)2、 k為何值時(shí),多項(xiàng)式x2-2xy+ky2+3x-5y+2能分解成兩個(gè)一次因式的積?(天津市競(jìng)賽試題)3、如果x3+ax2+bx+8有兩個(gè)因式x+1和x+2,求a+b的值。(美國(guó)猶他州中學(xué)競(jìng)賽試題)4、下列四個(gè)從左到右的變形中,是因式分解的是(

12、)(第8屆“希望杯”試題)A. (x+1)(x-1)=x2 B. (a-b)(m-n)=(b-a)(n-m) C. ab-a-b+1=(a-1)(b-1) D. m2-2m-3=m(m-2-3/m)5、下列五個(gè)多項(xiàng)式中在有理數(shù)范圍可以進(jìn)行因式分解的有( )(第10屆“希望杯”試題)a2b2-a2-b2-1x3-9ax2+27a2x-27a3 x(b+c-d)-y(d-b-c)-2c+2d-2b 3m(m-n)+6n(n-m) (x-2)2+4x A.B. C. D. 6、設(shè)bc,且滿足(3+1)(a-b)+2(b-c)=a-c,則a-bb-c的值( )(第12屆“希望杯”試題)A.大于零B. 等于零C. 小于零D. 正負(fù)號(hào)不確定7、已知x2+ax-12能分解成兩個(gè)整系數(shù)的一次因式乘積,則符合條件的整數(shù)a的個(gè)數(shù)是( )A.3個(gè)B. 4個(gè)C. 6個(gè)D. 8個(gè) (第7屆“希望杯”試題)8、y-2x+1是4xy-4x2-y2-k的一個(gè)因式,則k的值是( )(第14屆“希望杯”試題)A. 0B. -1C. 2D. 49、將多項(xiàng)式x2-4y2-9z2-12yz因式分解結(jié)果是( )(第9屆“希望杯”試題)A. (x+2y-3z)(x-2y-3z)B. (

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。

評(píng)論

0/150

提交評(píng)論