多元微分學(xué)應(yīng)用無約束極值與有約束極值ppt課件_第1頁(yè)
多元微分學(xué)應(yīng)用無約束極值與有約束極值ppt課件_第2頁(yè)
多元微分學(xué)應(yīng)用無約束極值與有約束極值ppt課件_第3頁(yè)
多元微分學(xué)應(yīng)用無約束極值與有約束極值ppt課件_第4頁(yè)
多元微分學(xué)應(yīng)用無約束極值與有約束極值ppt課件_第5頁(yè)
已閱讀5頁(yè),還剩36頁(yè)未讀, 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡(jiǎn)介

1、一、無約束極值一、無約束極值二、條件極值二、條件極值上一頁(yè)上一頁(yè)下一頁(yè)下一頁(yè)返回返回實(shí)例:某商店賣兩種牌子的果汁,本地牌子每實(shí)例:某商店賣兩種牌子的果汁,本地牌子每瓶進(jìn)價(jià)瓶進(jìn)價(jià)1元,外地牌子每瓶進(jìn)價(jià)元,外地牌子每瓶進(jìn)價(jià)1.2元,店主估元,店主估計(jì),如果本地牌子的每瓶賣計(jì),如果本地牌子的每瓶賣 元,外地牌子的元,外地牌子的每瓶賣每瓶賣 元,則每天可賣出元,則每天可賣出 瓶本瓶本地牌子的果汁,地牌子的果汁, 瓶外地牌子的果汁瓶外地牌子的果汁問:店主每天以什么價(jià)格賣兩種牌子的果汁可問:店主每天以什么價(jià)格賣兩種牌子的果汁可取得最大收益?取得最大收益?xyyx4570 yx7680 每天的收益為每天的收

2、益為 ),(yxf)7680)(2 . 1()4570)(1(yxyyxx 求最大收益即為求二元函數(shù)的最大值求最大收益即為求二元函數(shù)的最大值.問題的提出上一頁(yè)上一頁(yè)下一頁(yè)下一頁(yè)返回返回的的圖圖形形觀觀察察二二元元函函數(shù)數(shù)22yxexyz 播放播放一、無約束極值上一頁(yè)上一頁(yè)下一頁(yè)下一頁(yè)返回返回 設(shè)函數(shù)設(shè)函數(shù)),(yxfz 在點(diǎn)在點(diǎn)),(00yx的某鄰域內(nèi)的某鄰域內(nèi)有定義,對(duì)于該鄰域內(nèi)異于有定義,對(duì)于該鄰域內(nèi)異于),(00yx的點(diǎn)的點(diǎn)),(yx:若滿足不等式若滿足不等式),(),(00yxfyxf ,則稱函數(shù),則稱函數(shù)在在),(00yx有 極 大 值 ; 若 滿 足 不 等 式有 極 大 值 ;

3、若 滿 足 不 等 式),(),(00yxfyxf ,則稱函數(shù)在,則稱函數(shù)在),(00yx有極有極小值;小值;1 1、二元函數(shù)極值的定義、二元函數(shù)極值的定義極大值、極小值統(tǒng)稱為極值極大值、極小值統(tǒng)稱為極值. .使函數(shù)取得極值的點(diǎn)稱為極值點(diǎn)使函數(shù)取得極值的點(diǎn)稱為極值點(diǎn). .上一頁(yè)上一頁(yè)下一頁(yè)下一頁(yè)返回返回(1)(2)(3)例例1 1處有極小值處有極小值在在函數(shù)函數(shù))0 , 0(4322yxz 例例處有極大值處有極大值在在函數(shù)函數(shù))0 , 0(22yxz 例例處無極值處無極值在在函數(shù)函數(shù))0 , 0(xyz 上一頁(yè)上一頁(yè)下一頁(yè)下一頁(yè)返回返回定理定理 1 1(必要條件)(必要條件)設(shè)函數(shù)設(shè)函數(shù)),(

4、yxfz 在點(diǎn)在點(diǎn)),(00yx具有偏導(dǎo)數(shù),且具有偏導(dǎo)數(shù),且在點(diǎn)在點(diǎn)),(00yx處有極值,則它在該點(diǎn)的偏導(dǎo)數(shù)必處有極值,則它在該點(diǎn)的偏導(dǎo)數(shù)必然為零:然為零: 0),(00 yxfx, 0),(00 yxfy. .2 2、多元函數(shù)取得極值的條件、多元函數(shù)取得極值的條件不不妨妨設(shè)設(shè)),(yxfz 在在點(diǎn)點(diǎn)),(00yx處處有有極極大大值值,則則對(duì)對(duì)于于),(00yx的的某某鄰鄰域域內(nèi)內(nèi)任任意意 ),(yx),(00yx都都有有 ),(yxf),(00yxf,證證上一頁(yè)上一頁(yè)下一頁(yè)下一頁(yè)返回返回故故當(dāng)當(dāng)0yy ,0 xx 時(shí)時(shí),有有 ),(0yxf),(00yxf,說明一元函數(shù)說明一元函數(shù)),(0

5、yxf在在0 xx 處有極大值處有極大值,必必有有 0),(00 yxfx;類類似似地地可可證證 0),(00 yxfy.推推廣廣 如如果果三三元元函函數(shù)數(shù)),(zyxfu 在在點(diǎn)點(diǎn)),(000zyxP具具有有偏偏導(dǎo)導(dǎo)數(shù)數(shù),則則它它在在),(000zyxP有有極極值值的的必必要要條條件件為為 0),(000 zyxfx, 0),(000 zyxfy, 0),(000 zyxfz.上一頁(yè)上一頁(yè)下一頁(yè)下一頁(yè)返回返回例例如如, 點(diǎn)點(diǎn))0 , 0(是是函函數(shù)數(shù)xyz 的的駐駐點(diǎn)點(diǎn),但但不不是是極極值值點(diǎn)點(diǎn). 仿照一元函數(shù),凡能使一階偏導(dǎo)數(shù)同時(shí)為零仿照一元函數(shù),凡能使一階偏導(dǎo)數(shù)同時(shí)為零的點(diǎn),均稱為函數(shù)的

6、駐點(diǎn)的點(diǎn),均稱為函數(shù)的駐點(diǎn).駐點(diǎn)駐點(diǎn)極值點(diǎn)極值點(diǎn)問題:如何判定一個(gè)駐點(diǎn)是否為極值點(diǎn)?問題:如何判定一個(gè)駐點(diǎn)是否為極值點(diǎn)?定定理理 2 2(充充分分條條件件)設(shè)設(shè)函函數(shù)數(shù)),(yxfz 在在點(diǎn)點(diǎn)),(00yx的的某某鄰鄰域域內(nèi)內(nèi)連連續(xù)續(xù),有有一一階階及及二二階階連連續(xù)續(xù)偏偏導(dǎo)導(dǎo)數(shù)數(shù),注意:注意:上一頁(yè)上一頁(yè)下一頁(yè)下一頁(yè)返回返回又又 0),(00 yxfx, , 0),(00 yxfy, 令令 Ayxfxx ),(00, Byxfxy ),(00, Cyxfyy ),(00,則則),(yxf在點(diǎn)在點(diǎn)),(00yx處是否取得極值的條件如下:處是否取得極值的條件如下:(1 1)02 BAC時(shí)具有極值,

7、時(shí)具有極值, 當(dāng)當(dāng)0 A時(shí)有極大值,時(shí)有極大值, 當(dāng)當(dāng)0 A時(shí)有極小值;時(shí)有極小值;(2 2)02 BAC時(shí)沒有極值;時(shí)沒有極值;(3 3)02 BAC時(shí)可能有極值時(shí)可能有極值, ,也可能沒有極值,也可能沒有極值,還需另作討論還需另作討論上一頁(yè)上一頁(yè)下一頁(yè)下一頁(yè)返回返回例例 4 4 求由方程求由方程yxzyx22222 0104 z確定的函數(shù)確定的函數(shù)),(yxfz 的極值的極值將方程兩邊分別對(duì)將方程兩邊分別對(duì)yx,求偏導(dǎo)求偏導(dǎo) 0422204222yyxxzzzyzzzx由由函函數(shù)數(shù)取取極極值值的的必必要要條條件件知知,駐駐點(diǎn)點(diǎn)為為)1, 1( P,將將上上方方程程組組再再分分別別對(duì)對(duì)yx,

8、求求偏偏導(dǎo)導(dǎo)數(shù)數(shù),解解上一頁(yè)上一頁(yè)下一頁(yè)下一頁(yè)返回返回,21|, 0|,21|zzCzBzzAPyyPxyPxx 故故 )2(0)2(122 zzACB,函函數(shù)數(shù)在在P有有極極值值.將將)1, 1( P代代入入原原方方程程,有有6, 221 zz,當(dāng)當(dāng)21 z時(shí)時(shí),041 A,所所以以2)1, 1( fz為為極極小小值值;當(dāng)當(dāng)62 z時(shí)時(shí),041 A,所所以以6)1, 1( fz為為極極大大值值.上一頁(yè)上一頁(yè)下一頁(yè)下一頁(yè)返回返回求求函函數(shù)數(shù)),(yxfz 極極值值的的一一般般步步驟驟:第一步第一步 解方程組解方程組, 0),( yxfx0),( yxfy求求出出實(shí)實(shí)數(shù)數(shù)解解,得得駐駐點(diǎn)點(diǎn).第第

9、二二步步 對(duì)對(duì)于于每每一一個(gè)個(gè)駐駐點(diǎn)點(diǎn)),(00yx,求求出出二二階階偏偏導(dǎo)導(dǎo)數(shù)數(shù)的的值值 A、B、C.第第三三步步 定定出出2BAC 的的符符號(hào)號(hào),再再判判定定是是否否是是極極值值.上一頁(yè)上一頁(yè)下一頁(yè)下一頁(yè)返回返回求最值的一般方法:求最值的一般方法: 將函數(shù)在將函數(shù)在D D內(nèi)的所有駐點(diǎn)處的函數(shù)值內(nèi)的所有駐點(diǎn)處的函數(shù)值及在及在D D的邊界上的最大值和最小值相互比的邊界上的最大值和最小值相互比較,其中最大者即為最大值,最小者即較,其中最大者即為最大值,最小者即為最小值為最小值. . 與一元函數(shù)相類似,我們可以利用函數(shù)的與一元函數(shù)相類似,我們可以利用函數(shù)的極值來求函數(shù)的最大值和最小值極值來求函數(shù)的

10、最大值和最小值.3 3、多元函數(shù)的最值、多元函數(shù)的最值上一頁(yè)上一頁(yè)下一頁(yè)下一頁(yè)返回返回例例 5 5 求二元函數(shù)求二元函數(shù))4(),(2yxyxyxfz 在直線在直線6 yx,x軸和軸和y軸所圍成的閉區(qū)域軸所圍成的閉區(qū)域D上的最大值與最小值上的最大值與最小值.解解先先求求函函數(shù)數(shù)在在D內(nèi)內(nèi)的的駐駐點(diǎn)點(diǎn),xyo6 yxDD如圖如圖,上一頁(yè)上一頁(yè)下一頁(yè)下一頁(yè)返回返回解解方方程程組組 0)4(),(0)4(2),(222yxyxxyxfyxyxxyyxfyx得得區(qū)區(qū)域域D內(nèi)內(nèi)唯唯一一駐駐點(diǎn)點(diǎn))1 , 2(,且且4)1 , 2( f,再再求求),(yxf在在D邊邊界界上上的的最最值值, 在在邊邊界界0

11、x和和0 y上上0),( yxf,上一頁(yè)上一頁(yè)下一頁(yè)下一頁(yè)返回返回在在邊邊界界6 yx上上,即即xy 6于于是是)2)(6(),(2 xxyxf,由由 02)6(42 xxxfx,得得4, 021 xx, 2|64 xxy,64)2 , 4( f 比比較較后后可可知知4)1 , 2( f為為最最大大值值,64)2 , 4( f為為最最小小值值.xyo6 yxD上一頁(yè)上一頁(yè)下一頁(yè)下一頁(yè)返回返回例例 6 6 求求122 yxyxz的最大值和最小值的最大值和最小值., 0)1()(2)1(22222 yxyxxyxzx, 0)1()(2)1(22222 yxyxyyxzy得駐點(diǎn)得駐點(diǎn))21,21(和

12、和)21,21( ,解解 由由上一頁(yè)上一頁(yè)下一頁(yè)下一頁(yè)返回返回即即邊邊界界上上的的值值為為零零.,21)21,21( z,21)21,21( z所以最大值為所以最大值為21,最小值為,最小值為21 .因?yàn)橐驗(yàn)?1lim22 yxyxyx無條件極值:對(duì)自變量除了限制在定義無條件極值:對(duì)自變量除了限制在定義域內(nèi)外,并無其他條件域內(nèi)外,并無其他條件.上一頁(yè)上一頁(yè)下一頁(yè)下一頁(yè)返回返回實(shí)例:實(shí)例: 小王有小王有200元錢,他決定用來購(gòu)買兩元錢,他決定用來購(gòu)買兩種急需物品:計(jì)算機(jī)磁盤和錄音磁帶,設(shè)他種急需物品:計(jì)算機(jī)磁盤和錄音磁帶,設(shè)他購(gòu)買購(gòu)買 張磁盤,張磁盤, 盒錄音磁帶達(dá)到最佳效果,盒錄音磁帶達(dá)到最佳

13、效果,效果函數(shù)為效果函數(shù)為 設(shè)每張磁設(shè)每張磁盤盤8元,每盒磁帶元,每盒磁帶10元,問他如何分配這元,問他如何分配這200元以達(dá)到最佳效果元以達(dá)到最佳效果xyyxyxUlnln),( 問題的實(shí)質(zhì):求問題的實(shí)質(zhì):求 在條在條件件 下的極值點(diǎn)下的極值點(diǎn)yxyxUlnln),( 200108 yx二、條件極值上一頁(yè)上一頁(yè)下一頁(yè)下一頁(yè)返回返回拉格朗日乘數(shù)法拉格朗日乘數(shù)法 要找函數(shù)要找函數(shù)),(yxfz 在條件在條件0),( yx 下的下的可能極值點(diǎn),可能極值點(diǎn),先構(gòu)造函數(shù)先構(gòu)造函數(shù)),(),(),(yxyxfyxF ,其中其中 為某一常數(shù),可由為某一常數(shù),可由 . 0),(, 0),(),(, 0),(

14、),(yxyxyxfyxyxfyyxx 解出解出 , yx,其中,其中yx,就是可能的極值點(diǎn)的坐標(biāo)就是可能的極值點(diǎn)的坐標(biāo).條件極值:對(duì)自變量有附加條件的極條件極值:對(duì)自變量有附加條件的極值值上一頁(yè)上一頁(yè)下一頁(yè)下一頁(yè)返回返回拉格朗日乘數(shù)法可推廣到自變量多于兩個(gè)的情況:拉格朗日乘數(shù)法可推廣到自變量多于兩個(gè)的情況:要找函數(shù)要找函數(shù)),(tzyxfu 在條件在條件 0),( tzyx ,0),( tzyx 下的極值,下的極值, 先構(gòu)造函數(shù)先構(gòu)造函數(shù) ),(),(tzyxftzyxF ),(),(21tzyxtzyx 其中其中21, 均為常數(shù),可由均為常數(shù),可由 偏導(dǎo)數(shù)為零及條件解出偏導(dǎo)數(shù)為零及條件解出

15、tzyx,,即得極值點(diǎn)的坐標(biāo),即得極值點(diǎn)的坐標(biāo).上一頁(yè)上一頁(yè)下一頁(yè)下一頁(yè)返回返回例例 7 7 將將正正數(shù)數(shù) 12分分成成三三個(gè)個(gè)正正數(shù)數(shù)zyx,之之和和 使使得得zyxu23 為為最最大大.解解令令 )12(),(23 zyxzyxzyxF , 120020323322zyxyxFyzxFzyxFzyx 解解得得唯唯一一駐駐點(diǎn)點(diǎn))2 , 4 , 6(,.691224623max u那那么么故故最最大大值值為為上一頁(yè)上一頁(yè)下一頁(yè)下一頁(yè)返回返回例例 8 8 在在第第一一卦卦限限內(nèi)內(nèi)作作橢橢球球面面 1222222 czbyax的的切切平平面面,使使切切平平面面與與三三個(gè)個(gè)坐坐標(biāo)標(biāo)面面所所圍圍成成的

16、的四四面面體體體體積積最最小小,求求切切點(diǎn)點(diǎn)坐坐標(biāo)標(biāo).解解設(shè)設(shè)),(000zyxP為為橢橢球球面面上上一一點(diǎn)點(diǎn),令令1),(222222 czbyaxzyxF,則則202|axFPx , 202|byFPy , 202|czFPz 過過),(000zyxP的的切切平平面面方方程程為為上一頁(yè)上一頁(yè)下一頁(yè)下一頁(yè)返回返回 )(020 xxax )(020yyby0)(020 zzcz,化化簡(jiǎn)簡(jiǎn)為為 1202020 czzbyyaxx,該該切切平平面面在在三三個(gè)個(gè)軸軸上上的的截截距距各各為為 02xax ,02yby ,02zcz ,所所圍圍四四面面體體的的體體積積 000222661zyxcbaxy

17、zV ,上一頁(yè)上一頁(yè)下一頁(yè)下一頁(yè)返回返回在條件在條件1220220220 czbyax下求下求 V 的最小值的最小值,令令 ,lnlnln000zyxu ),(000zyxG 000lnlnlnzyx)1(220220220 czbyax ,由由,010, 0, 0220220220000 cybyaxGGGzyx上一頁(yè)上一頁(yè)下一頁(yè)下一頁(yè)返回返回當(dāng)當(dāng)切切點(diǎn)點(diǎn)坐坐標(biāo)標(biāo)為為(3a,3b,3c)時(shí)時(shí),四四面面體體的的體體積積最最小小abcV23min . 01021021021220220220200200200czbyaxczzbyyaxx 可得可得即即30ax 30by ,30cz 上一頁(yè)上一頁(yè)

18、下一頁(yè)下一頁(yè)返回返回多元函數(shù)的極值多元函數(shù)的極值拉格朗日乘數(shù)法拉格朗日乘數(shù)法(取得極值的必要條件、充分條件)(取得極值的必要條件、充分條件)多元函數(shù)的最值多元函數(shù)的最值四、小結(jié)上一頁(yè)上一頁(yè)下一頁(yè)下一頁(yè)返回返回思考題思考題 若若),(0yxf及及),(0yxf在在),(00yx點(diǎn)均取得點(diǎn)均取得極值, 則極值, 則),(yxf在點(diǎn)在點(diǎn)),(00yx是否也取得極值?是否也取得極值?上一頁(yè)上一頁(yè)下一頁(yè)下一頁(yè)返回返回思考題解答思考題解答不不是是.例如例如 22),(yxyxf ,當(dāng)當(dāng)0 x時(shí)時(shí),2), 0(yyf 在在)0 , 0(取取極極大大值值;當(dāng)當(dāng)0 y時(shí),時(shí),2)0 ,(xxf 在在)0 , 0

19、(取極小值取極小值;但但22),(yxyxf 在在)0 , 0(不不取取極極值值.上一頁(yè)上一頁(yè)下一頁(yè)下一頁(yè)返回返回一、一、 填空題填空題: :1 1、 函數(shù)函數(shù))4)(6(),(22yyxxyxf 在在_點(diǎn)取點(diǎn)取得極得極_值為值為_._.2 2、 函數(shù)函數(shù)xyz 在附加條件在附加條件1 yx下的極下的極_值值為為_._.3 3、 方程方程02642222 zyxzyx所確定的所確定的函數(shù)函數(shù)),(yxfz 的極大值是的極大值是_,_,極小值極小值是是_._.二二、 在在 平平 面面xoy上上 求求 一一 點(diǎn)點(diǎn) , , 使使 它它 到到0, 0 yx及及0162 yx三三直直線線的的距距離離平平方方之之和和為為最最小小. .三三、 求求內(nèi)內(nèi)接接于于半半徑徑為為a的的球球且且有有最最大大體體積積的的長(zhǎng)長(zhǎng)方方體體. .練練 習(xí)習(xí) 題題上一頁(yè)上一頁(yè)下一頁(yè)下一頁(yè)返回返回四、四、 在第一卦限內(nèi)作球面在第一卦限內(nèi)作球面1222 zyx的切平面的切平面, ,使使得切平面與三坐標(biāo)面所圍的四面體的體積最小得切平面與三坐標(biāo)面所圍的四面體的體積最小, ,求求切點(diǎn)的坐標(biāo)切點(diǎn)的坐標(biāo). .上一頁(yè)上一頁(yè)下一頁(yè)下一頁(yè)返回返回一一、1 1、( (3 3, ,2 2) ), ,大大, ,3 36 6; 2 2、大大, ,41; 3 3、7 7, ,- -1 1. .二二、)516,58(. .三三、當(dāng)當(dāng)長(zhǎng)長(zhǎng)

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。

評(píng)論

0/150

提交評(píng)論