第六節(jié)函數(shù)圖像的討論ppt課件_第1頁
第六節(jié)函數(shù)圖像的討論ppt課件_第2頁
第六節(jié)函數(shù)圖像的討論ppt課件_第3頁
第六節(jié)函數(shù)圖像的討論ppt課件_第4頁
第六節(jié)函數(shù)圖像的討論ppt課件_第5頁
已閱讀5頁,還剩8頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領

文檔簡介

1、一、漸近線一、漸近線定義定義: :一一條條漸漸近近線線. .的的f f( (x x) )y y就就稱稱為為曲曲線線L L那那么么直直線線趨趨向向于于零零, ,的的距距離離L L到到某某定定直直線線P P如如果果點點移移向向無無窮窮點點時時, ,沿沿著著曲曲線線P P上上的的一一動動點點f f( (x x) )y y當當曲曲線線1.1.鉛直漸近線鉛直漸近線)(軸軸的的漸漸近近線線垂垂直直于于x.)()(lim)(lim000的的一一條條鉛鉛直直漸漸近近線線就就是是那那么么或或如如果果xfyxxxfxfxxxx 6 函數(shù)圖像的討論函數(shù)圖像的討論例如例如,)3)(2(1 xxy有鉛直漸近線兩條有鉛直

2、漸近線兩條: :.3,2 xx2.2.水平漸近線水平漸近線)(軸軸的的漸漸近近線線平平行行于于x.)()()(lim)(lim的的一一條條水水平平漸漸近近線線就就是是那那么么為為常常數(shù)數(shù)或或如如果果xfybybbxfbxfxx 例如例如,arctanxy 有水平漸近線兩條有水平漸近線兩條: :.2,2 yy3.3.斜漸近線斜漸近線.)(),(0)()(lim0)()(lim的的一一條條斜斜漸漸近近線線就就是是那那么么為為常常數(shù)數(shù)或或如如果果xfybaxybabaxxfbaxxfxx 斜漸近線求法斜漸近線求法:,)(limaxxfx .)(limbaxxfx .)(的的一一條條斜斜漸漸近近線線就

3、就是是曲曲線線那那么么xfybaxy 注意注意:;)(lim)1(不不存存在在如如果果xxfx ,)(lim,)(lim)2(不不存存在在但但存存在在axxfaxxfxx .)(不不存存在在斜斜漸漸近近線線可可以以斷斷定定xfy 例例1 1.1)3)(2(2)(的的漸漸近近線線求求 xxxxf解解).,1()1 ,(: D )(lim1xfx, )(lim1xfx, .1 是是曲曲線線的的鉛鉛直直漸漸近近線線 x xxfx)(lim又又)1()3)(2(2lim xxxxx,2 2)1()3)(2(2limxxxxxx 1)1(2)3)(2(2lim xxxxxx,4 .42是是曲曲線線的的一

4、一條條斜斜漸漸近近線線 xy的的兩兩條條漸漸近近線線如如圖圖1)3)(2(2)( xxxxf二、圖形描繪的步驟利用函數(shù)特性描繪函數(shù)圖形利用函數(shù)特性描繪函數(shù)圖形.第一步第一步第二步第二步第三步第三步第四步第四步 確定函數(shù)圖形的水平、鉛直漸近線、斜確定函數(shù)圖形的水平、鉛直漸近線、斜漸近線以及其他變化趨勢漸近線以及其他變化趨勢;第五步第五步三、作圖舉例三、作圖舉例例例 2 2.2)1(4)(2的的圖圖形形作作函函數(shù)數(shù) xxxf解解,0: xD非奇非偶函數(shù)非奇非偶函數(shù),且無對稱性且無對稱性.,)2(4)(3xxxf .)3(8)(4xxxf ,0)( xf令令,2 x得得駐駐點點,0)( xf令令.3 x得得特特殊殊點點2)1(4lim)(lim2 xxxfxx,2 ;2 y得得水水平平漸漸近近線線2)1(4lim)(lim200 xxxfxx, .0 x得得鉛鉛直直漸漸近近線線列表確定函數(shù)升降區(qū)間列表確定函數(shù)升降區(qū)間,凹凸區(qū)間及極值點和拐點凹凸區(qū)間及極值點和拐點:x)3,( ), 0( )2, 3( 3 )0 , 2( )(xf )(xf 00)(xf 2 0 不存在不存在拐點拐點極值點極值點間間斷斷點點3 )926, 3( :補補充充點點

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
  • 6. 下載文件中如有侵權或不適當內容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論