必修二知識點(diǎn)_第1頁
必修二知識點(diǎn)_第2頁
必修二知識點(diǎn)_第3頁
必修二知識點(diǎn)_第4頁
必修二知識點(diǎn)_第5頁
已閱讀5頁,還剩6頁未讀, 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡介

1、一、立體幾何初步(一)幾何體1柱、錐、臺、球的結(jié)構(gòu)特征(1)柱棱柱:一般的,有兩個(gè)面互相平行,其余各面都是四邊形,并且每相鄰兩個(gè)四邊形的公共邊都互相平行,由這些面所圍成的幾何體叫做棱柱;棱柱中兩個(gè)互相平行的面叫做棱柱的底面,簡稱為底;其余各面叫做棱柱的側(cè)面;相鄰側(cè)面的公共邊叫做棱柱的側(cè)棱;側(cè)面與底面的公共頂點(diǎn)叫做棱柱的頂點(diǎn)。底面是三角形、四邊形、五邊形的棱柱分別叫做三棱柱、四棱柱、五棱柱圓柱:以矩形的一邊所在的直線為旋轉(zhuǎn)軸,其余邊旋轉(zhuǎn)形成的曲面所圍成的幾何體叫做圓柱;旋轉(zhuǎn)軸叫做圓柱的軸;垂直于軸的邊旋轉(zhuǎn)而成的曲面叫做圓柱的側(cè)面;無論旋轉(zhuǎn)到什么位置,不垂直于軸的邊都叫做圓柱側(cè)面的母線。棱柱與圓柱

2、統(tǒng)稱為柱體;(2)錐棱錐:一般的有一個(gè)面是多邊形,其余各面都是有一個(gè)公共頂點(diǎn)的三角形,由這些面所圍成的幾何體叫做棱錐;這個(gè)多邊形面叫做棱錐的底面或底;有公共頂點(diǎn)的各個(gè)三角形面叫做棱錐的側(cè)面;各側(cè)面的公共頂點(diǎn)叫做棱錐的頂點(diǎn);相鄰側(cè)面的公共邊叫做棱錐的側(cè)棱。底面是三角錐、四邊錐、五邊錐的棱柱分別叫做三棱錐、四棱錐、五棱錐圓錐:以直角三角形的一條直角邊所在的直線為旋轉(zhuǎn)軸,其余兩邊旋轉(zhuǎn)形成的曲面所圍成的幾何體叫做圓錐;旋轉(zhuǎn)軸為圓錐的軸;垂直于軸的邊旋轉(zhuǎn)形成的面叫做圓錐的底面;斜邊旋轉(zhuǎn)形成的曲面叫做圓錐的側(cè)面。棱錐與圓錐統(tǒng)稱為錐體。(3)臺棱臺:用一個(gè)平行于底面的平面去截棱錐,底面和截面之間的部分叫做棱

3、臺;原棱錐的底面和截面分別叫做棱臺的下底面和上底面;棱臺也有側(cè)面、側(cè)棱、頂點(diǎn)。圓臺:用一個(gè)平行于底面的平面去截圓錐,底面和截面之間的部分叫做圓臺;原圓錐的底面和截面分別叫做圓臺的下底面和上底面;圓臺也有側(cè)面、母線、軸。圓臺和棱臺統(tǒng)稱為臺體。(4)球以半圓的直徑所在的直線為旋轉(zhuǎn)軸,半圓面旋轉(zhuǎn)一周形成的幾何體叫做球體,簡稱為球;半圓的圓心叫做球的球心,半圓的半徑叫做球的半徑,半圓的直徑叫做球的直徑。(5)組合體由柱、錐、臺、球等幾何體組成的復(fù)雜的幾何體叫組合體。2空間幾何體的三視圖三視圖是觀測者從不同位置觀察同一個(gè)幾何體,畫出的空間幾何體的圖形。他具體包括:(1)正視圖:物體前后方向投影所得到的投

4、影圖;它能反映物體的高度和長度;(2)側(cè)視圖:物體左右方向投影所得到的投影圖;它能反映物體的高度和寬度;(3)俯視圖:物體上下方向投影所得到的投影圖;它能反映物體的長度和寬度;3空間幾何體的直觀圖(1)斜二測畫法建立直角坐標(biāo)系,在已知水平放置的平面圖形中取互相垂直的OX,OY,建立直角坐標(biāo)系;畫出斜坐標(biāo)系,在畫直觀圖的紙上(平面上)畫出對應(yīng)的OX,OY,使XOY =45°(或135°),它們確定的平面表示水平平面;畫對應(yīng)圖形,在已知圖形平行于X軸的線段,在直觀圖中畫成平行于X軸,且長度保持不變;在已知圖形平行于Y軸的線段,在直觀圖中畫成平行于Y軸,且長度變?yōu)樵瓉淼囊话?;擦?/p>

5、輔助線,圖畫好后,要擦去X軸、Y軸及為畫圖添加的輔助線(虛線)。(2)平行投影與中心投影平行投影的投影線是互相平行的,中心投影的投影線相交于一點(diǎn)。(二)面積與體積1多面體的面積和體積公式名稱側(cè)面積(S側(cè))全面積(S全)體 積(V)棱柱棱柱直截面周長×lS側(cè)+2S底S底·h=S直截面·h直棱柱chS底·h棱錐棱錐各側(cè)面積之和S側(cè)+S底S底·h正棱錐ch棱臺棱臺各側(cè)面面積之和S側(cè)+S上底+S下底h(S上底+S下底+)正棱臺 (c+c)h表中S表示面積,c、c分別表示上、下底面周長,h表斜高,h表示斜高,l表示側(cè)棱長。2旋轉(zhuǎn)體的面積和體積公式名稱圓柱

6、圓錐圓臺球S側(cè)2rlrl(r1+r2)lS全2r(l+r)r(l+r)(r1+r2)l+(r21+r22)4R2Vr2h(即r2l)r2hh(r21+r1r2+r22)R3表中l(wèi)、h分別表示母線、高,r表示圓柱、圓錐與球冠的底半徑,r1、r2分別表示圓臺 上、下底面半徑,R表示半徑。(三)空間點(diǎn)線面1平面概述(1)平面的兩個(gè)特征:無限延展 平的(沒有厚度)(2)平面的畫法:通常畫平行四邊形來表示平面(3)平面的表示:用一個(gè)小寫的希臘字母、等表示,如平面、平面;用表示平行四邊形的兩個(gè)相對頂點(diǎn)的字母表示,如平面AC。2三公理三推論:公理1:若一條直線上有兩個(gè)點(diǎn)在一個(gè)平面內(nèi),則該直線上所有的點(diǎn)都在這

7、個(gè)平面內(nèi):A,B,A,B公理2:如果兩個(gè)平面有一個(gè)公共點(diǎn),那么它們還有其他公共點(diǎn),且所有這些公共點(diǎn)的集合是一條過這個(gè)公共點(diǎn)的直線。公理3:經(jīng)過不在同一直線上的三點(diǎn),有且只有一個(gè)平面。推論一:經(jīng)過一條直線和這條直線外的一點(diǎn),有且只有一個(gè)平面。推論二:經(jīng)過兩條相交直線,有且只有一個(gè)平面。推論三:經(jīng)過兩條平行直線,有且只有一個(gè)平面。3空間直線:(1)空間兩條直線的位置關(guān)系:相交直線有且僅有一個(gè)公共點(diǎn);平行直線在同一平面內(nèi),沒有公共點(diǎn);異面直線不同在任何一個(gè)平面內(nèi),沒有公共點(diǎn)。相交直線和平行直線也稱為共面直線。異面直線的畫法常用的有下列三種:(2)平行直線:在平面幾何中,平行于同一條直線的兩條直線互相

8、平行,這個(gè)結(jié)論在空間也是成立的。即公理4:平行于同一條直線的兩條直線互相平行。(3)異面直線定理:連結(jié)平面內(nèi)一點(diǎn)與平面外一點(diǎn)的直線,和這個(gè)平面內(nèi)不經(jīng)過此點(diǎn)的直線是異面直線。推理模式:AB與a是異面直線。4直線和平面的位置關(guān)系(1)直線在平面內(nèi)(無數(shù)個(gè)公共點(diǎn));(2)直線和平面相交(有且只有一個(gè)公共點(diǎn));(3)直線和平面平行(沒有公共點(diǎn))用兩分法進(jìn)行兩次分類。它們的圖形分別可表示為如下,符號分別可表示為,。線面平行的判定定理:如果不在一個(gè)平面內(nèi)的一條直線和平面內(nèi)的一條直線平行,那么這條直線和這個(gè)平面平行。推理模式:線面平行的性質(zhì)定理:如果一條直線和一個(gè)平面平行,經(jīng)過這條直線的平面和這個(gè)平面相交,

9、那么這條直線和交線平行。推理模式:5兩個(gè)平面的位置關(guān)系有兩種:兩平面相交(有一條公共直線)、兩平面平行(沒有公共點(diǎn))(1)兩個(gè)平面平行的判定定理:如果一個(gè)平面內(nèi)有兩條相交直線都平行于一個(gè)平面,那么這兩個(gè)平面平行。定理的模式:推論:如果一個(gè)平面內(nèi)有兩條相交直線分別平行于另一個(gè)平面內(nèi)的兩條相交直線,那么這兩個(gè)平面互相平行。推論模式:(2)兩個(gè)平面平行的性質(zhì)(1)如果兩個(gè)平面平行,那么其中一個(gè)平面內(nèi)的直線平6線線垂直判斷線線垂直的方法:所成的角是直角,兩直線垂直;垂直于平行線中的一條,必垂直于另一條。三垂線定理:在平面內(nèi)的一條直線,如果它和這個(gè)平面的一條斜線的射影垂直,那么它也和這條斜線垂直。三垂線

10、定理的逆定理:在平面內(nèi)的一條直線,如果和這個(gè)平面的一條斜線垂直,那么它也和這條斜線的射影垂直。推理模式: 。注意:(1)三垂線指PA,PO,AO都垂直內(nèi)的直線a 其實(shí)質(zhì)是:斜線和平面內(nèi)一條直線垂直的判定和性質(zhì)定理 (2)要考慮a的位置,并注意兩定理交替使用。7線面垂直定義:如果一條直線l和一個(gè)平面相交,并且和平面內(nèi)的任意一條直線都垂直,我們就說直線l和平面互相垂直其中直線l叫做平面的垂線,平面叫做直線l的垂面,直線與平面的交點(diǎn)叫做垂足。直線l與平面垂直記作:l。直線與平面垂直的判定定理:如果一條直線和一個(gè)平面內(nèi)的兩條相交直線都垂直,那么這條直線垂直于這個(gè)平面。直線和平面垂直的性質(zhì)定理:如果兩條

11、直線同垂直于一個(gè)平面,那么這兩條直線平行。8面面垂直兩個(gè)平面垂直的定義:相交成直二面角的兩個(gè)平面叫做互相垂直的平面。兩平面垂直的判定定理:(線面垂直面面垂直)如果一個(gè)平面經(jīng)過另一個(gè)平面的一條垂線,那么這兩個(gè)平面互相垂直。兩平面垂直的性質(zhì)定理:(面面垂直線面垂直)若兩個(gè)平面互相垂直,那么在一個(gè)平面內(nèi)垂直于它們的交線的直線垂直于另一個(gè)平面。二、解析幾何初步1傾斜角:一條直線L向上的方向與X軸的正方向所成的最小正角,叫做直線的傾斜角,范圍為。2斜率:當(dāng)直線的傾斜角不是90°時(shí),則稱其正切值為該直線的斜率,即k=tan;當(dāng)直線的傾斜角等于90°時(shí),直線的斜率不存在。3過兩點(diǎn)p1(x

12、1,y1),p2(x2,y2)(x1x2)的直線的斜率公式:k=tan(若x1x2,則直線p1p2的斜率不存在,此時(shí)直線的傾斜角為90°)。4直線方程的五種形式確定直線方程需要有兩個(gè)互相獨(dú)立的條件。確定直線方程的形式很多,但必須注意各種形式的直線方程的適用范圍。名稱方程說明適用條件斜截式y(tǒng)=kx+bk斜率b縱截距傾斜角為90°的直線不能用此式點(diǎn)斜式y(tǒng)-y0=k(x-x0)(x0,y0)直線上已知點(diǎn),k斜率傾斜角為90°的直線不能用此式兩點(diǎn)式=(x1,y1),(x2,y2)是直線上兩個(gè)已知點(diǎn)與兩坐標(biāo)軸平行的直線不能用此式截距式+=1a直線的橫截距b直線的縱截距過(0

13、,0)及與兩坐標(biāo)軸平行的直線不能用此式一般式Ax+By+C=0,分別為斜率、橫截距和縱截距A、B不能同時(shí)為零直線的點(diǎn)斜式與斜截式不能表示斜率不存在(垂直于x 軸)的直線;兩點(diǎn)式不能表示平行或重合兩坐標(biāo)軸的直線;截距式不能表示平行或重合兩坐標(biāo)軸的直線及過原點(diǎn)的直線。5直線l1與直線l2的的平行與垂直(1)若l1,l2均存在斜率且不重合:l1/l2 k1=k2;l1l2 k1k2=1。(2)若若A1、A2、B1、B2都不為零。l1/l2;l1l2 A1A2+B1B2=0;l1與l2相交;l1與l2重合;注意:若A2或B2中含有字母,應(yīng)注意討論字母=0與0的情況。兩條直線的交點(diǎn):兩條直線的交點(diǎn)的個(gè)數(shù)

14、取決于這兩條直線的方程組成的方程組的解的個(gè)數(shù)。5距離(1)兩點(diǎn)間距離:若A(x1,y1),B(x2,y2),則特別地:軸,則、軸,則。(2)平行線間距離:若, 則:。注意點(diǎn):x,y對應(yīng)項(xiàng)系數(shù)應(yīng)相等。(3)點(diǎn)到直線的距離:,則P到l的距離為:7圓的方程圓心為,半徑為r的圓的標(biāo)準(zhǔn)方程為:。特殊地,當(dāng)時(shí),圓心在原點(diǎn)的圓的方程為:。圓的一般方程,圓心為點(diǎn),半徑,其中。二元二次方程,表示圓的方程的充要條件是:、項(xiàng)項(xiàng)的系數(shù)相同且不為0,即;、沒有xy項(xiàng),即B=0;、。8直線Ax+By+C=0與圓的位置關(guān)系有三種(1)若,;(2);(3)。還可以利用直線方程與圓的方程聯(lián)立方程組求解,通過解的個(gè)數(shù)來判斷:(1)當(dāng)方程組有2個(gè)公共解時(shí)(直線與圓有2個(gè)交點(diǎn)),直線與圓相交;(2)當(dāng)方程組有且只有1個(gè)公共解時(shí)(直線與圓只有1

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論