版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡(jiǎn)介
1、高中數(shù)學(xué)必修4第一章知識(shí)點(diǎn)2、角的頂點(diǎn)與原點(diǎn)重合,角的始邊與軸的非負(fù)半軸重合,終邊落在第幾象限,則稱為第幾象限角第一象限角的集合為第二象限角的集合為第三象限角的集合為第四象限角的集合為終邊在軸上的角的集合為終邊在軸上的角的集合為終邊在坐標(biāo)軸上的角的集合為3、與角終邊相同的角的集合為4、已知是第幾象限角,確定所在象限的方法:先把各象限均分等份,再?gòu)妮S的正半軸的上方起,依次將各區(qū)域標(biāo)上一、二、三、四,則原來是第幾象限對(duì)應(yīng)的標(biāo)號(hào)即為終邊所落在的區(qū)域5、長(zhǎng)度等于半徑長(zhǎng)的弧所對(duì)的圓心角叫做弧度6、半徑為的圓的圓心角所對(duì)弧的長(zhǎng)為,則角的弧度數(shù)的絕對(duì)值是7、弧度制與角度制的換算公式:,8、若扇形的圓心角為,
2、半徑為,弧長(zhǎng)為,周長(zhǎng)為,面積為,則,9、設(shè)是一個(gè)任意大小的角,的終邊上任意一點(diǎn)的坐標(biāo)是,它與原點(diǎn)的距離是,則,10、三角函數(shù)在各象限的符號(hào):第一象限全為正,第二象限正弦為正,第三象限正切為正,第四象限余弦為正Pvx y A O M T 11、三角函數(shù)線:,12、同角三角函數(shù)的基本關(guān)系:;13、三角函數(shù)的誘導(dǎo)公式:,口訣:奇變偶不變,符號(hào)看象限,口訣:正弦與余弦互換,符號(hào)看象限14、(1)一般地,函數(shù)Y=AsinX(A0且A1)的圖像可以看作是把Y=sinX的圖像上所有的縱坐標(biāo)伸長(zhǎng)(當(dāng)A1時(shí))或縮短(當(dāng)0A0且A 1)圖像可以看作是把Y=sinX的圖像上所有的橫坐標(biāo)縮短(當(dāng)1時(shí))或伸長(zhǎng)(當(dāng)00)
3、時(shí)或向右(當(dāng)0)時(shí)平行移動(dòng)|個(gè)單位而得到的函數(shù)的性質(zhì):振幅:;周期:;頻率:;相位:;初相:函數(shù),當(dāng)時(shí),取得最小值為 ;當(dāng)時(shí),取得最大值為,則,15、正弦函數(shù)、余弦函數(shù)和正切函數(shù)的圖象與性質(zhì):函數(shù)性質(zhì) 圖象定義域值域最值當(dāng)時(shí),;當(dāng) 時(shí),當(dāng)時(shí), ;當(dāng)時(shí),既無最大值也無最小值周期性奇偶性奇函數(shù)偶函數(shù)奇函數(shù)單調(diào)性在上是增函數(shù);在上是減函數(shù)在上是增函數(shù);在上是減函數(shù)在上是增函數(shù)對(duì)稱性對(duì)稱中心對(duì)稱軸對(duì)稱中心對(duì)稱軸對(duì)稱中心無對(duì)稱軸16、向量:既有大小,又有方向的量數(shù)量:只有大小,沒有方向的量有向線段的三要素:起點(diǎn)、方向、長(zhǎng)度零向量:長(zhǎng)度為的向量單位向量:長(zhǎng)度等于個(gè)單位的向量平行向量(共線向量):方向相同或
4、相反的非零向量零向量與任一向量平行相等向量:長(zhǎng)度相等且方向相同的向量17、向量加法運(yùn)算:三角形法則的特點(diǎn):首尾相連平行四邊形法則的特點(diǎn):共起點(diǎn)三角形不等式: 運(yùn)算性質(zhì):交換律:;結(jié)合律:;坐標(biāo)運(yùn)算:設(shè),則18、向量減法運(yùn)算:三角形法則的特點(diǎn):共起點(diǎn),連終點(diǎn),方向指向被減向量坐標(biāo)運(yùn)算:設(shè),則設(shè)、兩點(diǎn)的坐標(biāo)分別為,則19、向量數(shù)乘運(yùn)算:實(shí)數(shù)與向量的積是一個(gè)向量的運(yùn)算叫做向量的數(shù)乘,記作;當(dāng)時(shí),的方向與的方向相同;當(dāng)時(shí),的方向與的方向相反;當(dāng)時(shí),運(yùn)算律:;坐標(biāo)運(yùn)算:設(shè),則20、向量共線定理:向量與共線,當(dāng)且僅當(dāng)有唯一一個(gè)實(shí)數(shù),使設(shè),其中,則當(dāng)且僅當(dāng)時(shí),向量、共線21、平面向量基本定理:如果、是同一平
5、面內(nèi)的兩個(gè)不共線向量,那么對(duì)于這一平面內(nèi)的任意向量,有且只有一對(duì)實(shí)數(shù)、,使(不共線的向量、作為這一平面內(nèi)所有向量的一組基底)22、分點(diǎn)坐標(biāo)公式:設(shè)點(diǎn)是線段上的一點(diǎn),、的坐標(biāo)分別是,當(dāng)時(shí),點(diǎn)的坐標(biāo)是23、平面向量的數(shù)量積:零向量與任一向量的數(shù)量積為性質(zhì):設(shè)和都是非零向量,則當(dāng)與同向時(shí),;當(dāng)與反向時(shí),;或運(yùn)算律:;坐標(biāo)運(yùn)算:設(shè)兩個(gè)非零向量,則若,則,或設(shè),則設(shè)、都是非零向量,是與的夾角,則24、兩角和與差的正弦、余弦和正切公式:;();()25、二倍角的正弦、余弦和正切公式:(,)26、,其中高中數(shù)學(xué)必修5知識(shí)點(diǎn)1、正弦定理:在中,、分別為角、的對(duì)邊,為的外接圓的半徑,則有2、正弦定理的變形公式:
6、,;,;3、三角形面積公式:4、余弦定理:在中,有,5、余弦定理的推論:,6、設(shè)、是的角、的對(duì)邊,則:若,則;若,則;若,則7、數(shù)列:按照一定順序排列著的一列數(shù)8、數(shù)列的項(xiàng):數(shù)列中的每一個(gè)數(shù)9、有窮數(shù)列:項(xiàng)數(shù)有限的數(shù)列10、無窮數(shù)列:項(xiàng)數(shù)無限的數(shù)列11、遞增數(shù)列:從第2項(xiàng)起,每一項(xiàng)都不小于它的前一項(xiàng)的數(shù)列12、遞減數(shù)列:從第2項(xiàng)起,每一項(xiàng)都不大于它的前一項(xiàng)的數(shù)列13、常數(shù)列:各項(xiàng)相等的數(shù)列14、擺動(dòng)數(shù)列:從第2項(xiàng)起,有些項(xiàng)大于它的前一項(xiàng),有些項(xiàng)小于它的前一項(xiàng)的數(shù)列15、數(shù)列的通項(xiàng)公式:表示數(shù)列的第項(xiàng)與序號(hào)之間的關(guān)系的公式16、數(shù)列的遞推公式:表示任一項(xiàng)與它的前一項(xiàng)(或前幾項(xiàng))間的關(guān)系的公式17
7、、如果一個(gè)數(shù)列從第2項(xiàng)起,每一項(xiàng)與它的前一項(xiàng)的差等于同一個(gè)常數(shù),則這個(gè)數(shù)列稱為等差數(shù)列,這個(gè)常數(shù)稱為等差數(shù)列的公差18、由三個(gè)數(shù),組成的等差數(shù)列可以看成最簡(jiǎn)單的等差數(shù)列,則稱為與的等差中項(xiàng)若,則稱為與的等差中項(xiàng)19、若等差數(shù)列的首項(xiàng)是,公差是,則20、通項(xiàng)公式的變形:;21、若是等差數(shù)列,且(、),則;若是等差數(shù)列,且(、),則22、等差數(shù)列的前項(xiàng)和的公式:;23、等差數(shù)列的前項(xiàng)和的性質(zhì):若項(xiàng)數(shù)為,則,且,若項(xiàng)數(shù)為,則,且,(其中,)24、如果一個(gè)數(shù)列從第項(xiàng)起,每一項(xiàng)與它的前一項(xiàng)的比等于同一個(gè)常數(shù),則這個(gè)數(shù)列稱為等比數(shù)列,這個(gè)常數(shù)稱為等比數(shù)列的公比25、在與中間插入一個(gè)數(shù),使,成等比數(shù)列,則稱
8、為與的等比中項(xiàng)若,則稱為與的等比中項(xiàng)26、若等比數(shù)列的首項(xiàng)是,公比是,則27、通項(xiàng)公式的變形:;28、若是等比數(shù)列,且(、),則;若是等比數(shù)列,且(、),則29、等比數(shù)列的前項(xiàng)和的公式:30、等比數(shù)列的前項(xiàng)和的性質(zhì):若項(xiàng)數(shù)為,則,成等比數(shù)列31、;32、不等式的性質(zhì): ;,;33、一元二次不等式:只含有一個(gè)未知數(shù),并且未知數(shù)的最高次數(shù)是的不等式34、二次函數(shù)的圖象、一元二次方程的根、一元二次不等式的解集間的關(guān)系:判別式二次函數(shù)的圖象一元二次方程的根有兩個(gè)相異實(shí)數(shù)根 有兩個(gè)相等實(shí)數(shù)根沒有實(shí)數(shù)根一元二次不等式的解集35、二元一次不等式:含有兩個(gè)未知數(shù),并且未知數(shù)的次數(shù)是的不等式36、二元一次不等式
9、組:由幾個(gè)二元一次不等式組成的不等式組37、二元一次不等式(組)的解集:滿足二元一次不等式組的和的取值構(gòu)成有序數(shù)對(duì),所有這樣的有序數(shù)對(duì)構(gòu)成的集合38、在平面直角坐標(biāo)系中,已知直線,坐標(biāo)平面內(nèi)的點(diǎn)若,則點(diǎn)在直線的上方若,則點(diǎn)在直線的下方39、在平面直角坐標(biāo)系中,已知直線若,則表示直線上方的區(qū)域;表示直線下方的區(qū)域若,則表示直線下方的區(qū)域;表示直線上方的區(qū)域40、線性約束條件:由,的不等式(或方程)組成的不等式組,是,的線性約束條件目標(biāo)函數(shù):欲達(dá)到最大值或最小值所涉及的變量,的解析式線性目標(biāo)函數(shù):目標(biāo)函數(shù)為,的一次解析式線性規(guī)劃問題:求線性目標(biāo)函數(shù)在線性約束條件下的最大值或最小值問題可行解:滿足線性約束條件的解可行域:所有可行解組成
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 2025版杉木林木材市場(chǎng)調(diào)研與買賣預(yù)測(cè)合同3篇
- 二零二五年幼兒園幼兒安全防護(hù)責(zé)任合同2篇
- 2025年度智能家居門窗系統(tǒng)安裝及售后服務(wù)合同范本3篇
- 二零二五版農(nóng)用車租賃管理及技術(shù)支持合同3篇
- 2025年度木工材料采購(gòu)與供應(yīng)合同范本4篇
- 二零二五年礦山轉(zhuǎn)讓協(xié)議及礦產(chǎn)資源開發(fā)運(yùn)營(yíng)合同3篇
- 二零二五年度投資擔(dān)保公司產(chǎn)業(yè)投資基金合同
- 課題申報(bào)參考:明清江南文人居室陳設(shè)藝術(shù)研究
- 2025年度城市地下綜合管廊配電箱柜安全防護(hù)采購(gòu)合同4篇
- 二零二五年度文化創(chuàng)意產(chǎn)業(yè)合作聘請(qǐng)兼職勞務(wù)合同
- 疥瘡病人的護(hù)理
- 人工智能算法與實(shí)踐-第16章 LSTM神經(jīng)網(wǎng)絡(luò)
- 17個(gè)崗位安全操作規(guī)程手冊(cè)
- 2025年山東省濟(jì)南市第一中學(xué)高三下學(xué)期期末統(tǒng)一考試物理試題含解析
- 中學(xué)安全辦2024-2025學(xué)年工作計(jì)劃
- 網(wǎng)絡(luò)安全保障服務(wù)方案(網(wǎng)絡(luò)安全運(yùn)維、重保服務(wù))
- 2024年鄉(xiāng)村振興(產(chǎn)業(yè)、文化、生態(tài))等實(shí)施戰(zhàn)略知識(shí)考試題庫(kù)與答案
- 現(xiàn)代科學(xué)技術(shù)概論智慧樹知到期末考試答案章節(jié)答案2024年成都師范學(xué)院
- 軟件模塊化設(shè)計(jì)與開發(fā)標(biāo)準(zhǔn)與規(guī)范
- 2024年遼寧鐵道職業(yè)技術(shù)學(xué)院高職單招(英語(yǔ)/數(shù)學(xué)/語(yǔ)文)筆試歷年參考題庫(kù)含答案解析
- 有機(jī)農(nóng)業(yè)種植模式
評(píng)論
0/150
提交評(píng)論