




版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領
文檔簡介
1、 統(tǒng)統(tǒng) 計計 學學 方方 法法 的的 分分 類類 與與 選選 擇擇根據(jù)研究設計類型選擇分析方法根據(jù)研究設計類型選擇分析方法 (一)、成組比較的設計 在成組比較設計中,若是兩組比較需要應用t檢驗或X2檢驗。多組比較需應用方差分析、行列表X2檢驗或分級的分析方法。(二)、配對(自身實驗前后)設計 這種類型的設計需要按照配比的t檢驗,X2檢驗及配對的病例對照研究方法進行數(shù)據(jù)分析。 (三)、重復測量的設計 這類設計方法是在給定一個處理因素后在不同的時間重復測量某一效應變量的改變情況。如欲評價生物制品接種后的免疫學效果,在接種后的2周、4周、6周和8周測定抗體滴度,即為此類設計類型。對于這種設計類型的數(shù)
2、據(jù)需應用重復測量的方差分析方法進行數(shù)據(jù)的分析。(四)、多因素設計 若在研究設計中有多個自變量,則可根據(jù)因變量的性質選擇合適的多因素分析方法。如果自變量是數(shù)值變量,則可考慮應用多元回歸分析方法、協(xié)方差分析方法。如果是分類變量,則可選擇logistic回歸分析方法、判別分析方法及聚類分析方法等。 根據(jù)變量的類型選擇分析方法根據(jù)變量的類型選擇分析方法n區(qū)別與明確研究的因變量和自變量具有重要的流行病學與生物統(tǒng)計學意義,首先它有助于選擇擬研究的變量,對調查表的設計具有指導作用。n其次數(shù)據(jù)分析階段可以指導數(shù)據(jù)分析方法的選擇及模型的建立。若因變量是分類變量,則??紤]應用分類變量的分析方法,如卡方檢驗,log
3、istic回歸分析等。如果因變量是數(shù)值變量,則考慮應用數(shù)值變量的分析方法如t檢驗、方差分析,協(xié)方差分析、多元回歸等。同時明確自變量與因變量可以建立正確的統(tǒng)計學分析模型。 n因變量應該放在模型的左側,自變量則放在模型的右側。n例如欲評價不同治療方法(口服藥物、注射胰島素及膳食控制)對糖尿病人的治療效果(血糖水平),在分析時要求調整病人的性別、年齡和病程的影響。對本例的處理需要進行協(xié)方差分析,在應用SAS進行分析時,要將血糖水平(因變量)放在模型的左則,而治療方法或其它協(xié)變量(covariate)即性別、年齡和病程放在模型的右側。又如分析脂蛋白(a)與冠心病發(fā)生的關系,則冠心病是否發(fā)生為因變量,脂
4、蛋白(a)則為自變量,不可顛倒這種關系。 不同變量類型的數(shù)據(jù)分析方法選擇不同變量類型的數(shù)據(jù)分析方法選擇因變量因變量自變量自變量數(shù)值變量數(shù)值變量分類變量分類變量有序變量有序變量數(shù)值變量數(shù)值變量相關分析,多元回相關分析,多元回歸分析歸分析t t檢驗檢驗, ,方差分析,方差分析,協(xié)方差分析,多協(xié)方差分析,多元回歸分析元回歸分析相關分析,多元回相關分析,多元回歸分析歸分析分類變量分類變量t t檢驗檢驗, ,方差分析,方差分析,logisticlogistic回歸分回歸分析析, ,判別分析,判別分析,聚類分析聚類分析c c2 2檢驗,檢驗,logisticlogistic回回歸分析歸分析c c2 2檢驗
5、檢驗有序變量有序變量方差分析,方差分析,logisticlogistic回歸分回歸分析析, ,判別分析,判別分析,聚類分析聚類分析c c2 2檢驗,檢驗,logisticlogistic回回歸分析歸分析相關分析,相關分析,c c2 2檢驗檢驗生存時間生存時間生存分析生存分析不同研究設計和數(shù)據(jù)類型的數(shù)據(jù)分析方法選擇不同研究設計和數(shù)據(jù)類型的數(shù)據(jù)分析方法選擇 研究設計類型研究設計類型變量類型變量類型兩組比較兩組比較兩組以上比較兩組以上比較實驗前后比較實驗前后比較重復測量重復測量兩變量間的聯(lián)系兩變量間的聯(lián)系重復測量的重復測量的方 差 分方 差 分析析線性回歸,線性回歸,Pearson相關系數(shù)相關系數(shù)
6、數(shù)值變量數(shù)值變量 t檢驗檢驗方差分析方差分析配對配對t檢驗檢驗 分類變量分類變量 c c2 2檢驗檢驗c c2 2檢驗檢驗配對配對c c2 2檢驗檢驗列聯(lián)表相關系數(shù)列聯(lián)表相關系數(shù) 有序變量有序變量Mann-Whitney秩 和 檢秩 和 檢驗驗Kruskal-Wallis分分析析Wilcoxon符號符號秩和檢驗秩和檢驗Spearman相關系相關系數(shù)數(shù) 生存時間生存時間生存分析生存分析數(shù)據(jù)的分析程序數(shù)據(jù)的分析程序 數(shù)據(jù)的轉換數(shù)據(jù)的轉換1 )非正態(tài)數(shù)據(jù)的變量轉換 多數(shù)的統(tǒng)計學分析方法是建立在數(shù)據(jù)正態(tài)分布的基礎上的,若數(shù)據(jù)不符合正態(tài)分布,則不能夠應用參數(shù)檢驗(parametric test)的方法,
7、只能應用非參數(shù)檢驗(non-parametric test)的方法,而非參數(shù)的方法不是對原始數(shù)據(jù)的檢驗,如秩和檢驗就是非參數(shù)檢驗方法之一,它是對原始數(shù)據(jù)的秩次(rank)進行檢驗,這樣可能損失數(shù)據(jù)信息,降低檢驗效率 n 在對數(shù)值變量進行分析時,需首先根據(jù)統(tǒng)計分析方法/統(tǒng)計分析公式的限制性使用條件對數(shù)據(jù)進行“條件”檢驗,如正態(tài)性檢驗和方差齊性檢驗等。很多統(tǒng)計學軟件具有方便的正態(tài)性檢驗、方差齊性檢驗功能如SAS軟件等 .若經(jīng)過檢驗數(shù)據(jù)不符合使用條件,就需要進行數(shù)據(jù)的變量變換,變換后符合條件就可以應用參數(shù)檢驗的方法,否則,只有應用非參數(shù)檢驗的方法。n數(shù)據(jù)變量轉換的方法很多,可以根據(jù)數(shù)據(jù)的分布特征,選
8、擇合適的數(shù)據(jù)轉換方法。常用的方法有對數(shù)變換,平方根變換或倒數(shù)變換等。 2) 分類變量轉換成啞變量 若分類變量是二分類尺度及順序尺度,則可直接應用其原有的數(shù)量化數(shù)值,但對于名義尺度因為各類別間沒有順序關系,在進行不同分析(包括多元分析、logistic回歸、Cox回歸等)時,不能使用原始的計算機錄入數(shù)值,必經(jīng)進行變量轉換。即將該變量轉換成(水平數(shù)-1)個啞變量,再將這些新轉換的變量放入多因素模型中。 t t檢驗的應用條件檢驗的應用條件n兩組數(shù)據(jù)的比較n1樣本量比較?。╪50)n2樣本來自正態(tài)總體n3兩樣本總體方差齊同n當兩樣本方差不齊時可以采用t檢驗,變量變換,或者秩和檢驗。方差分析的應用條件方
9、差分析的應用條件n兩組以上數(shù)據(jù)的比較n1各樣本是相互獨立的隨機樣本;n2各樣本要來自正態(tài)總體;n3要求各個樣本的總體方差齊同。多個樣本均數(shù)間的兩兩比較多個樣本均數(shù)間的兩兩比較nNewmanKeuls檢驗,亦稱StudentNewmanKeuls(SNK)檢驗,簡稱q檢驗。n最小顯著性差距(LSD)t檢驗。協(xié)方差分析協(xié)方差分析n定量分析中,進行兩個樣本或者多個樣本的均數(shù)比較時,不僅需要使用假設檢驗判斷其差異是否具有統(tǒng)計學差異,還應該考慮他們之間是否存在混雜因素(協(xié)變量)的影響。若存在協(xié)變量,則應該通過協(xié)方差分析進行校正。協(xié)方差分析是定量變量分析中控制混雜因素的重要手段 影響觀察指標的其他非研究性
10、因素(混雜因素)在統(tǒng)計分析中又稱之為協(xié)變量;考慮協(xié)變量影響的方差分析即為協(xié)方差分析。協(xié)方差分析是解決以上問題的分析方法,它將線性回歸與方差分析結合起來,檢驗2個或者多個修正均數(shù)之間有無差別的假設檢驗方法。一般是先用直線回歸的方法找出各組因變量與協(xié)變量之間的數(shù)量關系,求得修假定協(xié)變量相等時的修正系數(shù),然后用方差分析比較修正均數(shù)間的差別。協(xié)方差分析的條件協(xié)方差分析的條件1各個樣本來自方差齊同的正態(tài)總體2各組的總體直線回歸系數(shù)相同,且都不為0。協(xié)方差分析的判別步驟:協(xié)方差分析的判別步驟:n1正態(tài)性和方差齊性檢驗;n2判斷協(xié)變量與因變量有無線性關系;n3判斷各組回歸直線是否平行。直線回歸與相關的區(qū)別與
11、聯(lián)系直線回歸與相關的區(qū)別與聯(lián)系區(qū)別直線相關直線回歸變量地位變量 x 變量 y 處于平等的地位,彼此相關關系變量 y 稱為因變量,處在被解釋的地位,x 稱為自變量,用于預測因變量的變化變量性質所涉及的變量 x 和 y 都是隨機變量,要求兩個變量服從雙變量正態(tài)分布因變量 y 是隨機變量,自變量 x 可以是隨機變量,也可以是非隨機的確定變量實際作用主要是描述兩個變量之間線性關系的密切程度(相關系數(shù)無單位)揭示變量 x 對變量 y 的影響大小(回歸系數(shù)有單位),還可以由回歸方程進行預測和控制 多元線性回歸的基本概念多元線性回歸的基本概念 事物間的相互聯(lián)系往往是多方面的,在很多情況下對應變量y 發(fā)生影響
12、的自變量往往不止一個 。多元線性回歸的目的就是用一個多元線性回歸方程表示多個自變量和1個應變量間的關系。mmiixbxbxbxbby 22110標準偏回歸系數(shù)表示其他自變量固定的情況下,xi改變一個單位,y平均改變bi個單位。多元線性回歸的應用條件:多元線性回歸的應用條件:n1. 獨立性:各觀察對象間相互獨立。n2. 線性:自變量與應變量間的關系為線性。n3. 正態(tài)性:自變量取不同值時,應變量的分布為正態(tài)。n4. 方差齊性:自變量取不同值時,應變量的總體方差相等。n5. 當不符合條件時,可對自變量進行變換。 如:23322110)lg(xbxbxbbyn要比較各個自變量對于應變量的作用大小,不
13、能用偏回歸系數(shù),因為各偏回歸系數(shù)的單位不同。必須把偏回歸系數(shù)標準化,化成沒有單位的標準偏回歸系數(shù).n消除不同單位的影響后,標準偏回歸系數(shù)的絕對值越大,該自變量對于應變量的作用越大,但該差別是否有統(tǒng)計意義,也必須經(jīng)過檢驗。(2) 對各偏回歸系數(shù)的顯著性檢驗: F檢驗與 t檢驗 1. 計算截距和各偏回歸系數(shù)。2. 多元回歸方程的顯著性檢驗:(1)整個方程的顯著性檢驗:用方差分析。STEPWISE REGRESSIONn一逐步回歸分析的基本概念 逐步回歸分析的目的是建立“最優(yōu)”回歸方程。 “最優(yōu)”回歸方程是指包含所有對y有顯著作用的自變量,而不包含對y作用不顯著的自變量的方程。 逐步回歸分析的計算方
14、法逐步回歸分析的計算方法n 在供選的自變量Xi中,按其對y的作用大小,由大到小地把自變量逐個引入方程, 每引入一個自變量就對它作顯著性檢驗,顯著時才引入,而當新的自變量進入方程后, 對方程中原有的自變量也要作檢驗,并把作用最小且退化為不顯著的自變量逐個剔出方程。因此,逐步回歸的每一步(引入一個變量或剔除一個變量都稱為一步)前后都要作顯著性檢驗,以保證每次引入新變量前方程中只包含作用顯著的自變量。這樣一步步進行下去, 直至方程中所含自變量都顯著而又沒有新的作用顯著的自變量可引入方程為止。 逐步回歸分析在醫(yī)學研究中的應用逐步回歸分析在醫(yī)學研究中的應用及需要注意的幾個問題及需要注意的幾個問題n1方程
15、“最優(yōu)”問題,實際是精選自變量以求得擬和效果最好的多元回歸方程。最優(yōu)子集回歸是選擇一種使回歸方程擬和最好的自變量,而逐步回歸則選擇對因變量作用有意義的自變量。要根據(jù)研究目的選用適合方法。n2逐步回歸主要在醫(yī)學中用于病因探索,臨床療效分析及控制等。n3線性回歸模型要注意正態(tài)性,方差齊性和獨立性,因變量必須是隨機變量等。n4入選變量如果明顯地與實際問題的專業(yè)理論不一致時,首先檢查數(shù)據(jù)是否有異常點,自變量間有無共線性存在,數(shù)據(jù)輸入是否有誤等,要結合專業(yè)知識作出合理的解釋。n5逐步回歸在對大量因素進行分析時,可以先進行聚類分析,然后進行逐步回歸。通常,觀察單位取變量值的510倍為宜。LogisticL
16、ogistic回歸分析的基本思想回歸分析的基本思想回憶:回憶: 線性回歸分析對因變量的要求線性回歸分析對因變量的要求因變量因變量y 連續(xù)型連續(xù)型 服從正態(tài)分布服從正態(tài)分布膽固醇含量膽固醇含量自變量自變量x數(shù)值型數(shù)值型 與與Y呈線性關系呈線性關系年齡年齡舒張壓舒張壓醫(yī)學研究中經(jīng)常遇到分類型變量,例如:醫(yī)學研究中經(jīng)常遇到分類型變量,例如:n二分類變量:二分類變量:生存與死亡生存與死亡有病與無病有病與無病有效與無效有效與無效感染與未感染感染與未感染n多分類有序變量:多分類有序變量:疾病程度(輕度、中度、重度)疾病程度(輕度、中度、重度)治愈效果(治愈、顯效、好轉、無效)治愈效果(治愈、顯效、好轉、無
17、效)n多分類無序變量:多分類無序變量:手術方法(手術方法(A、B、C)就診醫(yī)院(甲、乙、丙、?。┚驮\醫(yī)院(甲、乙、丙、?。﹏這種回歸分析問題不能借助于線性回歸模這種回歸分析問題不能借助于線性回歸模型,因為因變量的假設條件遭到破壞。型,因為因變量的假設條件遭到破壞。n能否找到一種其他形式的模型能否找到一種其他形式的模型y=f(x)來描述來描述分類變量分類變量y和和x之間依存關系呢?之間依存關系呢? 因為從數(shù)學角度看,使得因為從數(shù)學角度看,使得x取任意值而取任意值而y僅僅 取取1和和0兩個值的的函數(shù)不存在。兩個值的的函數(shù)不存在。n轉換為分析轉換為分析y取取某個值的概率某個值的概率變量變量p與與x的
18、關系的關系不能直接分析不能直接分析變量變量y與與x的關系的關系Logistic回歸模型回歸模型LogisticLogistic回歸分析的分類回歸分析的分類n按數(shù)據(jù)的類型:按數(shù)據(jù)的類型:非條件非條件logistic回歸分析(成組數(shù)據(jù))回歸分析(成組數(shù)據(jù))條件條件logistic回歸分析(配對病例回歸分析(配對病例-對照數(shù)據(jù))對照數(shù)據(jù))n按因變量取值個數(shù):按因變量取值個數(shù):二值二值logistic回歸分析回歸分析多值多值logistic回歸分析回歸分析n按自變量個數(shù):按自變量個數(shù):一元一元logistic回歸分析回歸分析多元多元logistic回歸分析回歸分析 Logistic Logistic
19、回歸分析回歸分析的數(shù)學模型的數(shù)學模型1 1、一元、一元logisticlogistic回歸模型回歸模型 令令y是是1,0變量,變量, x是一個危險因是一個危險因 素;素;p=p(y=1|x) ,那么,二值,那么,二值 變量變量y關于變量關于變量 x的一元的一元logistic 回歸模型是:回歸模型是:10 xp0.5-/p=p(x)變量變量p與與x的關系的關系 其中,其中,和和是未知參數(shù)或待估計的回歸系數(shù)。該模是未知參數(shù)或待估計的回歸系數(shù)。該模型描述了型描述了y取某個值(這里取某個值(這里y=1)的概率的概率p與自變量與自變量x之間的關系之間的關系2 2、 多元多元logisticlogist
20、ic回歸模型回歸模型 令令y是是1,0變量,變量,x1,x2,xk是是k個危險因素;個危險因素; p=p(y=1|x1,x2,xk),那么,變量,那么,變量y關于變關于變 量量x1,x2,xk的的k元元logistic回歸模型是:回歸模型是:Logistic 回歸模型的另外一種形式回歸模型的另外一種形式它給出變量它給出變量z=logit(p)關于關于x 的線性函數(shù)。的線性函數(shù)。參數(shù)估計的步驟參數(shù)估計的步驟 1數(shù)據(jù)結構 設有P個危險因素X1,X2,Xn及結果分析變量Y,觀察例數(shù)為n。進行l(wèi)ogistic回歸時,應將原始資料進行整理,一般格式如下編號因素YX1X2XP1X11X12XP1Y12X2
21、1X22XP2Y2nXn1Xn2Xn3XnPYn 2 參數(shù)的估計 Logsitc回歸的參數(shù)估計常用最大似然估計法。其基本思想是先建立似然函數(shù)和對數(shù)似然函數(shù),求似然函數(shù)或對數(shù)似然函數(shù)達到極大值時參數(shù)的取值,即為參數(shù)的最大似然估計值。可求出值。 3 假設檢驗 求得各個參數(shù)的估計值之后,并不意味著每個因素都與因變量有聯(lián)系,模型中應只保留對因變量有影響 因素,因此要求對方程中的各變量逐一進行檢驗,剔除對因變量無影響的因素,并對擬和的模型進行檢驗。 即使用似然比檢驗法,通過逐步回歸篩選自變量,最后得到具有統(tǒng)計學意義的logistic回歸方程。該過程很復雜,由計算機完成。n醫(yī)學中經(jīng)常需要作配對病例醫(yī)學中經(jīng)常需要作配對病例-對照研究。所謂的配對病例對照研究。所謂的配對病例-對照研究指的是在病例對照研究指的是在病例-對照研究中,對每一個病例配以對照研究中,對每一個病例配以性別、年齡或其它條件相似的一個性別、年齡或其它條件相似的一個(1:1)或幾個或幾個(1:M)對照,對照,
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經(jīng)權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
- 6. 下載文件中如有侵權或不適當內容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 別墅贈送地下室合同范本
- 廚具店雇傭合同范本
- 個人工作年度總結自我鑒定
- 保密協(xié)議 合同范本
- 醫(yī)療設備抵押合同范例
- 工業(yè)鍋爐司爐題庫與參考答案
- 賣車轉讓合同范本
- 一年級新生入學家長會的發(fā)言稿
- 《雨》閱讀理解訓練題及答案
- 東南亞企業(yè)合同范本
- 2025年買賣雙方合同模板
- 最專業(yè)的企業(yè)介紹模板課件
- 2025國家電投集團資本控股限公司本部招聘11人高頻重點模擬試卷提升(共500題附帶答案詳解)
- 2025年山東司法警官職業(yè)學院高職單招職業(yè)技能測試近5年常考版參考題庫含答案解析
- 2024年05月湖南招商銀行長沙分行長期社會招考筆試歷年參考題庫附帶答案詳解
- 鐵路信號基礎設備維護(第二版) 課件 項目一 信號繼電器檢修
- 江蘇省南京市2024年中考英語試題(含解析)
- 2025年匯成集團招聘筆試參考題庫含答案解析
- 《礦山機械》課件
- 湖南長沙自貿投資發(fā)展集團有限公司招聘筆試沖刺題2024
- 電力安全工作規(guī)程考試試題題庫
評論
0/150
提交評論