電路分析基礎(chǔ)各章節(jié)小結(jié)_第1頁
電路分析基礎(chǔ)各章節(jié)小結(jié)_第2頁
電路分析基礎(chǔ)各章節(jié)小結(jié)_第3頁
電路分析基礎(chǔ)各章節(jié)小結(jié)_第4頁
電路分析基礎(chǔ)各章節(jié)小結(jié)_第5頁
已閱讀5頁,還剩24頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)

文檔簡介

1、“電路分析基礎(chǔ)”教材各章小結(jié)第一章小結(jié):1. 電路理論的研究對象是實際電路的理想化模型,它是由理想電路元件組成。理想電路元件是從實際電路器件中抽象出來的,可以用數(shù)學公式精確定義。2. 電流和電壓是電路中最基本的物理量,分別定義為.dqi電流dt,方向為正電荷運動的方向。dwu電壓dq,方向為電位降低的方向。3. 參考方向是人為假設(shè)的電流或電壓數(shù)值為正的方向,電路理論中涉及的電流或電壓都是對應(yīng)于假設(shè)的參考方向的代數(shù)量。當一個元件或一段電路上電流和電壓參考方向一致時, 稱為關(guān)聯(lián)參考方向。4. 功率是電路分析中常用的物理量。當支路電流和電壓為關(guān)聯(lián)參考方向時,P ui ;當電流和電壓為非關(guān)聯(lián)參考方向時

2、,p ui。計算結(jié)果p 0表示支路吸收(消耗)功率;計算結(jié)果p 0表示支路提供(產(chǎn)生)功率。5. 電路元件可分為有源和無源元件;線性和非線性元件; 時變和非時變元件。 電路元件的電壓-電流關(guān)系表明該元件電壓和電流必須遵守的規(guī)律,又稱為元件的約束關(guān)系。(1) 線性非時變電阻元件的電壓 -電流關(guān)系滿足歐姆定律。 當電壓和電流為關(guān)聯(lián)參考方向時,表示為u=Ri;當電壓和電流為非關(guān)聯(lián)參考方向時,表示為u= Ri。電阻元件的伏安特性曲線是u-i平面上通過原點的一條直線。特別地,R 稱為開路;R= 0稱為短路。(2) 獨立電源有兩種電壓源的電壓按給定的時間函數(shù)us(t)變化,電流由其外電路確定。特別地,直流

3、電壓源的伏安特性曲線是 u-i平面上平行于i軸且u軸坐標為Us的直線。電流源的電流按給定的時間函數(shù)is(t)變化,電壓由其外電路確決定。特別地,直流電流源的伏安特性曲線是 u-i平面上平行于u軸且i軸坐標為Is的直線。(3) 受控電源受控電源不能單獨作為電路的激勵,又稱為非獨立電源,受控電源的輸出電壓或電流受到電路中某部分的電壓或電流的控制。有四種類型:VCVS、VCCS、CCVS和CCCS。6. 基爾霍夫定律表明電路中支路電流、支路電壓的拓撲約束關(guān)系,它與組成支路的元件性質(zhì)無關(guān)?;鶢柣舴螂娏鞫?KCL):對于任何集總參數(shù)電路,在任一時刻,流出任一節(jié)點或封閉 面的全部支路電流的代數(shù)和等于零。

4、KCL體現(xiàn)了節(jié)點或封閉面的電流連續(xù)性或電荷守恒性。數(shù)學表達為基爾霍夫電壓定律(KVL ):對于任何集總參數(shù)電路,在任一時刻,沿任一回路或閉合 節(jié)點序列的各段電壓的代數(shù)和等于零。KVL體現(xiàn)了回路或閉合節(jié)點序列的電位單值性或能量守恒性。數(shù)學表達為7.任何集總參數(shù)電路的元件約束 (VCR)和拓撲約束(KCL、KVL )是電路分析的基本依 據(jù)。第二章小結(jié):1. 等效是電路分析中一個非常重要的概念。結(jié)構(gòu)、元件參數(shù)可以完全不相同兩部分電路,若具有完全相同的外特性(端口電壓-電流關(guān)系),則相互稱為等效電路。等效變換就是把電路的一部分電路用其等效電路來代換。電路等效變換的目的是簡化電路,方便計算。值得注意的是

5、,等效變換對外電路來講是等效的,對變換的內(nèi)部電路則不一定等效。2. 電阻的串并聯(lián)公式計算等效電阻、對稱電路的等效化簡和電阻星形聯(lián)接與電阻三角形聯(lián)接的等效互換是等效變換最簡單的例子。3. 含獨立電源電路的等效互換(1)電源串并聯(lián)的等效化簡電壓源并聯(lián):只有電壓相等極性致的電壓源才能并聯(lián),且useqUsk電流源并聯(lián):iseqisk電流源串聯(lián):只有電流相等流向致的電流源才能串聯(lián),且iseqi sk電壓源串聯(lián):UseqUsk電壓源和電流源串聯(lián)等效為電流源;電壓源和電流源并聯(lián)等效為電壓源。(2)實際電源的兩種模型及其等效轉(zhuǎn)換實際電源可以用一個電壓源 Us和一個表征電源損耗的電阻 Rs的串聯(lián)電路來模擬。 稱

6、為 戴維南電路模型。實際電源也可以用一個電流源 is和一個表征電源損耗的電導 Gs的并聯(lián)電路來模擬。稱 為諾頓電路模型。Rs丄兩類實際電源等效轉(zhuǎn)換的條件為Gs , Us Rsls。(3)無伴電源的等效轉(zhuǎn)移無伴電壓源可以推過一個節(jié)點,無伴電流源可以推過一個回路。4. 含受控電源電路的等效變換在等效化簡過程中,受控電源與獨立電源一樣對待,只是受控電源的控制量不能過早消失。有源二端網(wǎng)絡(luò)等效化簡的最終結(jié)果是實際電源的兩種模型之一。常表示為u Ai B其中,A、B為常數(shù),u、i為二端網(wǎng)絡(luò)端口的電壓和電流。當端口上的電壓u和電流i參考方向關(guān)聯(lián)時,A就是戴維南電路模型中的 Rs,B就是戴 維南電路模型中的u

7、s。若令有源二端網(wǎng)絡(luò)中的獨立源為零,此時的網(wǎng)絡(luò)稱為無源二端網(wǎng)絡(luò),就端口特性而言,等效為一個線性電阻, 該電阻稱為二端網(wǎng)絡(luò)的輸入電阻或等效電阻。當端口上的電壓 u和電流i參考方向關(guān)聯(lián)時,輸入電阻為uRi Rs -I5. 計算含理想運算放大器的兩條重要依據(jù)是:(1) 輸入電阻Ri。故反相輸入和同相輸入電流均為零。通常稱為“虛斷路”。(2) 開環(huán)放大倍數(shù) A,且輸出電壓為有限值。a端和b端等電位。通常稱為“虛 短路”。第三章小結(jié):1. 對于具有b條支路和n個節(jié)點的連通網(wǎng)絡(luò),有(n 1)個線性無關(guān)的獨立 KCL方程, (b n+ 1)個線性無關(guān)的獨立 KVL方程。2. 根據(jù)元件約束(元件的VCR)和網(wǎng)

8、絡(luò)的拓撲約束(KCL, KVL ),支路分析法可分為支路電流法和支路電壓法。所需列寫的方程數(shù)為b個。用b個支路電流(電壓)作為電路變量,列出(n1)個節(jié)點的KCL方程和(b n+1)個回路的KVL方程,然后代入元件的 VCR。求 解這b個方程。最后,求解其它響應(yīng)。支路分析法的優(yōu)點是直觀,物理意義明確。缺點是方程數(shù)目多,計算量大。3. 網(wǎng)孔分析法適用于平面電路,以網(wǎng)孔電流為電路變量。 需列寫(b n+1)個網(wǎng)孔的KVL方程(網(wǎng)孔方程)。(I) 一般網(wǎng)絡(luò)選定網(wǎng)孔電流方向,網(wǎng)孔方程列寫的規(guī)則如下:本網(wǎng)孔電流X自電阻+工相鄰網(wǎng)孔電流X互電阻=本網(wǎng)孔沿網(wǎng)孔電流方向電壓源電壓升的代數(shù)和。若網(wǎng)孔電流均選為順

9、時針或均選為逆時針, 自電阻恒為正,互電阻恒為負。求 解網(wǎng)孔方程得到網(wǎng)孔電流,用 KVL 檢驗計算結(jié)果。最后求解其它響應(yīng)。(2) 含電流源的網(wǎng)絡(luò)有伴電流源轉(zhuǎn)換為有伴電壓源,再列寫網(wǎng)孔方程。無伴電流源如果為某一個網(wǎng)孔所獨有, 則與其相關(guān)的網(wǎng)孔電流為已知。 等于該電流源或 其負值,該網(wǎng)孔的正規(guī)的網(wǎng)孔方程可以省去。無伴電流源如果為兩個網(wǎng)孔所共有, 則需多假設(shè)一個變量: 電流源兩端的電壓。 在列寫 與電流源相關(guān)的網(wǎng)孔方程時, 必須考慮電流源兩端的電壓。 再增列一個輔助方程, 將無伴電 流源的電流用網(wǎng)孔電流表示出來。(3) 含受控電源的網(wǎng)絡(luò)受控源和獨立源同樣對待,控制量需增列輔助方程。4. 節(jié)點分析法適

10、用于任意電路,以節(jié)點電壓為電路變量。需列寫n1 個節(jié)點的 KCL方程 (節(jié)點方程 )。(l) 一般網(wǎng)絡(luò)選定參考節(jié)點,節(jié)點方程列寫規(guī)則如下:本節(jié)點電壓X自電導+工相鄰節(jié)點電壓X互電導=流入本節(jié)點電流源的代數(shù)和。自電導 恒為正,互電導恒為負; 并注意,與電流源串聯(lián)的電導不記入自電導或互電導。求解節(jié)點方 程得到節(jié)點電壓,用 KCL 檢驗計算結(jié)果。最后求解其它響應(yīng)。(2) 含電壓源的網(wǎng)絡(luò)有伴電壓源轉(zhuǎn)換為有伴電流源,再列寫節(jié)點方程。選擇無伴電壓源的一端為參考節(jié)點, 則另一端節(jié)點電壓為已知。 等于該電壓源或其負值, 該節(jié)點的正規(guī)的節(jié)點方程可以省去。 否則,則需多假設(shè)一個變量: 流經(jīng)電壓源的電流。 在列 寫

11、與電壓源相關(guān)的節(jié)點方程時, 必須考慮流經(jīng)電壓源的電流。 再增列一個輔助方程, 將無伴 電壓源的電壓用節(jié)點電壓表示出來。(3) 含受控電源的網(wǎng)絡(luò)受控源和獨立源同樣對待,控制量需增列輔助方程。完備的電路變量。 運用網(wǎng)絡(luò)圖論的這樣,可以得到一個與原網(wǎng)絡(luò)結(jié)G由邊(支路)和點(節(jié)點)組成。則可在對應(yīng)的圖的邊上用箭頭表示5. 網(wǎng)絡(luò)圖論基本概念 網(wǎng)孔電流和節(jié)點電壓都是求解任意線性網(wǎng)絡(luò)的獨立、 基本概念,還可以找到其它的獨立、完備的電路變量。(l) 基本概念: 將網(wǎng)絡(luò)中的每一條支路抽象為一根線段, 構(gòu)相同的幾何圖形,該圖形稱為原網(wǎng)絡(luò)的線圖,簡稱圖。圖 如果網(wǎng)絡(luò)中的每一條支路的電壓和電流取關(guān)聯(lián)參考方向, 出該參

12、考方向。 這樣就得到了有向圖。 任意兩節(jié)點之間至少存在一條由支路構(gòu)成的路徑的圖 稱為連通圖。由圖 G 的部分支路和節(jié)點組成的圖稱為圖 G 的子圖。(2) 樹:若連通圖G的一個子圖滿足:是連通的;包含圖G的全部節(jié)點;無回路,則該子圖稱為圖 G 的一個樹。圖的一個樹選定后,構(gòu)成樹的支路稱為樹支,其余的支路稱 為連支。全部樹支組成的集合稱為樹,而全部連支組成的集合稱為余樹或補樹。對于具有n個節(jié)點、 b 條支路的連通圖,線圖可能有多種不同的樹,但任一個樹的樹支數(shù)是相同的,為n 1。任一個補樹的連支數(shù)為 b n + 1。(3) 割集:連通圖中的支路集合滿足:若移去該集合中的所有支路,連通圖將被分為兩個獨

13、立的部分;若少移去集合中的任意一條支路線圖仍然是連通的。(4) 只包含一條樹支的割集稱為基本割集, 或單樹支割集。 顯然,基本割集的數(shù)目為 n 1。 樹支的方向是基本割集的方向。只包含一條連支的回路稱為基本回路,或稱單連支回路。顯然,基本回路的數(shù)目為bn+ 1。連支的方向是基本回路的方向。6. 回路分析法(1) bn1 個連支電流是線性網(wǎng)絡(luò)獨立、完備的電流變量?;芈贩治龇ㄊ且赃B支電流為 電路變量。列寫基本回路 KVL 方程,先求解連支電流進而求得電路響應(yīng)的網(wǎng)絡(luò)分析方法。 回路分析法是網(wǎng)孔分析法的推廣,網(wǎng)孔分析法是回路分析法的特例。(2) 分析步驟 畫出電路的有向線圖, 選定樹。為了減少變量個數(shù)

14、,盡量把電流源支路、 響應(yīng)支路和受 控源控制量支路選為連支。 以連支電流為變量列寫基本回路KVL 方程。規(guī)則如下:本回路電流x自電阻+ 工相鄰回路電流x互電阻=本回路沿連支電流方向電壓源電壓 升的代數(shù)和。 自電阻恒為正, 互電阻可正可負。 當通過互電阻的兩回路電流方向相同時取正, 相反時取負。求解回路電流,用 KCL 檢驗計算結(jié)果。最后求解其它響應(yīng)。7. 割集分析法(1) n 1 個樹支電壓是線性網(wǎng)絡(luò)獨立、完備的電壓變量。割集分析法是以樹支電壓為電路 變量。列寫基本割集 KCL 方程,先求解樹支電壓進而求得電路響應(yīng)的網(wǎng)絡(luò)分析方法。割集 分析法是節(jié)點分析法的推廣,節(jié)點分析法是割集分析法的特例。(

15、2) 分析步驟 畫出電路的有向線圖, 選定樹。為了減少變量個數(shù),盡量把電壓源支路、 響應(yīng)支路和受 控源控制量支路選為樹支。 以樹支電壓為變量列寫基本回路KCL 方程。規(guī)則如下:本割集樹支電壓x自電導+ 工相鄰割集樹支電壓x互電導=與本割集方向相反的所含 電流源的代數(shù)和。 自電導恒為正, 互電導可正可負。 當本割集和相鄰割集公共支路上切割方 向一致時取正, 相反時取負;并注意,與電流源串聯(lián)的電導不記入自電導或互電導。求解割 集電壓,用 KV L 檢驗計算結(jié)果。最后求解其它響應(yīng)。8. 電路的對偶特性電路中許多變量、 元件結(jié)構(gòu)和定律都成對出現(xiàn), 且存在明顯的一一對應(yīng)關(guān)系, 這種關(guān)系 稱為電路的對偶關(guān)

16、系。對偶表達式數(shù)學意義相同。 物理意義不同。 顯然,對偶和等效是完全 不同的概念。9. 對偶電路互為對偶的電路相互之間元件對偶,結(jié)構(gòu)也對偶。 平面電路才有對偶電路。對偶電路的畫法常用打點法。第四章小結(jié):1. 疊加定理: 在線性電路中, 任一支路電壓或電流都是電路中各獨立電源單獨作用時在該 支路上電壓或電流的代數(shù)和。應(yīng)用疊加定理應(yīng)注意:(l) 疊加定理只適用于線性電路,非線性電路一般不適應(yīng)。(2) 某獨立電源單獨作用時,其余獨立源置零。置零電壓源是短路,置零電流源是開路。 電源的內(nèi)阻以及電路其他部分結(jié)構(gòu)參數(shù)應(yīng)保持不變。(3) 疊加定理只適應(yīng)于任一支路電壓或電流。任一支路的功率或能量是電壓或電流的

17、二次 函數(shù),不能直接用疊加定理來計算。(4) 受控源為非獨立電源,應(yīng)保留不變。(5) 響應(yīng)疊加是代數(shù)和,應(yīng)注意響應(yīng)的參考方向。2. 替代定理:在具有唯一解的集總參數(shù)電路中,若已知某支路k的電壓uk或電流ik,且支路 k 與其它支路無耦合,那么,該支路可以用一個電壓為uk 的電壓源,或用一個電流為 ik的電流源替代。所得電路仍具有唯一解,替代前后電路中各支路的電壓和電流保持不變。應(yīng)用替代定理應(yīng)注意:(1) 替代定理適應(yīng)于任意集總參數(shù)電路,但替代前后必須保證電路具有唯一解的條件。(2) 所替代支路與其它支路無耦合。(3) “替代”與“等效變換”是兩個不同的概念。(4) 若支路 k 是電源,也可以用

18、電阻 Rk=uk/ ik 來替代。3. 等效電源定理(l) 戴維南定理:任一線性有源二端網(wǎng)絡(luò) N ,就其兩個輸出端而言,總可以用一個獨立電 壓源和一個電阻的串聯(lián)電路來等效,其中,獨立電壓源的電壓等于該二端網(wǎng)絡(luò)N 輸出端的開路電壓UOC,串聯(lián)電阻Ro等于將該二端網(wǎng)絡(luò)N內(nèi)所有獨立源置零時從輸出端看入的等效電阻。(2) 諾頓定理:任一線性有源二端網(wǎng)絡(luò)N,就其兩個輸出端而言,總可以用一個獨立電流源和一個電阻的并聯(lián)電路來等效,其中,獨立電流源的電流等于該二端網(wǎng)絡(luò)N輸出端的短路電流isc,并聯(lián)電阻Ro等于將該二端網(wǎng)絡(luò) N內(nèi)所有獨立源置零時從輸出端看入的等效電阻。應(yīng)用戴維南定理和諾頓定理應(yīng)注意:只要求有源二

19、端網(wǎng)絡(luò) N是線性的,而對該網(wǎng)絡(luò)所接外電路沒有限制,但有源二端網(wǎng)絡(luò)N與外電路不能有耦合關(guān)系。戴維南定理和諾頓定理互為對偶。當Ro 0且Ro時,有源二端網(wǎng)絡(luò)N既有戴維南等效電路也有諾頓等效電路,有u OCRoi SCi scUOCRoRoUOCisc(3) 最大功率傳輸有源二端網(wǎng)絡(luò)N與一個可變負載電阻Rl相接,當Rl = Ro時負載獲得最大功率,稱負載與有源二端網(wǎng)絡(luò)N匹配,最大功率為Pmax2Uoc4Ro4. 特勒根定理(l)特勒根第一定理:對于n個節(jié)點,b條支路的集總參數(shù)網(wǎng)絡(luò),設(shè)支路電壓為Uk,支路電流為ik , k 1,2, ,b,各支路電壓和電流取關(guān)聯(lián)參考方向,在任一時刻t,有Ukikk 1

20、特勒根第一定理反映電路功率守恒,又稱功率守恒定理。(2) 特勒根第二定理:兩個具有相同有向線圖的n個節(jié)點,b條支路的集總參數(shù)網(wǎng)絡(luò) N和N '設(shè)支路電壓分別為Uk和Uk,支路電流分別為ik和i k , k九2, b,各支路電壓和電流取關(guān)聯(lián)參考方向,在任一時刻t,有bUki'k0k 1bu'k ik0k 1和特勒根第二定理雖然具有功率的量綱,但并不表示支路的功率,因此特勒根第二定理又稱似功率守恒定理。應(yīng)用特勒根定理應(yīng)注意:證明特勒根定理成立只用到了KCL和KVL ,所以適應(yīng)于任意集總參數(shù)電路。定理在實際應(yīng)用中,注意各支路電壓和電流取關(guān)聯(lián)參考方向。5. 互易定理:一個僅有線性

21、電阻組成的無獨立源無受控源二端口網(wǎng)絡(luò),在單一激勵的情況下,激勵與響應(yīng)互換位置,其比值保持不變?;ヒ锥ɡ碛腥N形式一個僅有線性電阻組成的無獨立源無受控源二端口網(wǎng)絡(luò),一端口電壓源與另一端口響應(yīng)電流互換位置,其響應(yīng)電流不變。一個僅有線性電阻組成的無獨立源無受控源二端口網(wǎng)絡(luò),應(yīng)電壓互換位置,其響應(yīng)電壓不變。一端口電流源與另一端口響 一個僅有線性電阻組成的無獨立源無受控源二端口網(wǎng)絡(luò),一端口電壓源與另一端口響應(yīng)電壓,若互換成數(shù)值相同的電流源與響應(yīng)電流,其響應(yīng)電流在數(shù)值上與原響應(yīng)電壓相等。 應(yīng)用互易定理應(yīng)注意:只能用于一個僅有線性電阻組成的無獨立源無受控源二端口網(wǎng)絡(luò),單一激勵的情況。特勒根定理可以證明互易定

22、理成立, 對于互易定理的前兩種形式,互易前后激勵響應(yīng) 參考方向一致(都相同或都相反);互易定理的第三種形式則不然, 參考方向一邊相同另一邊 相反。第五章小結(jié):可以用一階微分方程來描述的電路稱為一階電路。1.電容元件一個在任一時刻t,所積聚電荷q(t)與端電壓u(t)可以用q-u平面上的一條曲線來描述的 二端元件稱為電容。線性非時變電容元件:q(t) Cu(t)電壓、電流取關(guān)聯(lián)參考方向時:i(t)微分形式VCR :du(t)dt上式表明電容是一種雙向、動態(tài)、慣性元件,一般情況下電容電壓不能跳變。1u(to) i( )d CtL0tto1u(t) - i( )d積分形式VCR :-上式表明電容是一

23、種有記憶元件,實際運算中必須已知u(to)(初始值),電容是一種儲1 2 Wc(t)-Cu (t)能元件。儲存電場能為2. 電感元件一個在任一時刻t,所交鏈的磁鏈(t)與電流i(t)可以用i平面上的一條曲線來描述的二端元件稱為電感。線性非時變電感元件:(t) Li(t)電壓、電流取關(guān)聯(lián)參考方向時:u(t)LdKn微分形式VCR :dt上式表明電感是一種雙向、動態(tài)、慣性元件,一般情況下電感電流不能跳變。1 t1七i(t) - i( )di(t。)- u( )d t to積分形式VCR :L-t0上式表明電感是一種有記憶元件,實際運算中必須已知i(to)(初始值),電感是一種儲1 2Wl (t)L

24、i (t)能元件。儲存磁場能為3. 換路和換路定則換路:電路的結(jié)構(gòu)或元件參數(shù)突然改變稱為換路。若設(shè)to 0時刻換路,則換路前一瞬間記為 t 0,換路后一瞬間記為t 0。換路定則:若換路瞬間電容電 流為有限值,即換路不形成Us C或C C構(gòu)成的全電容回路,則有Uc(0 ) Uc(0 ),或qc(0 ) qc(0 );對偶地,若換路瞬間電感電壓為有限值,即換路后不形成is L或L L構(gòu)成的全電感割集,則有iL (0 ) i-(0 ),或l(0 ) l(0 )。4.初始值計算初始值:電路變量在t 0時刻的值。初始值計算步驟:(1)求換路前的初始狀態(tài) Uc(0 ) 或iL(0 )。若換路前為直流激勵且

25、開關(guān)動作已經(jīng)很久,可將C看成開路,L看成短路。得到t 0時刻的等效圖,這是一個 t 0時刻特殊的電阻電路,簡稱0圖。求解電容兩端的電壓Uc(0 ),流過電感的電流iL(° )。(2) 在不形成全電容回路,不形成全電感割集的情況下,換路定則成立,即Uc(0 ) Uc(0 )或 i-(0 ) iL(0 )。(3) 作t 0時刻的等效圖,根據(jù)替代定理,電容用電壓為Uc(0 )的電壓源替代;電感用 電流為i-(0 )的電流源替代,從而得到時刻t 0時的另一個特殊的電阻電路, 簡稱0圖。 計算需求電壓或電流的值即為初始值。5. 一階電路的零輸入響應(yīng)激勵為零,僅由動態(tài)元件初始儲能引起的響應(yīng)稱為零

26、輸入響應(yīng)。一階電路的零輸入響應(yīng)的一般公式:trzi (t) rzi(0 )e t 0式中,rzi(t)為一階電路任意需求的零輸入響應(yīng)。rzi(0 )為僅由動態(tài)元件初始儲能引起的響GL應(yīng)的初始值。為時間常數(shù);含電容的一階電路RC,含電感的一階電路R。上述R為動態(tài)元件兩端看進去的等效電阻。若此時將動態(tài)元件初始儲能看成是內(nèi)電源,顯然動態(tài)元件初始儲能即內(nèi)電源與零輸入響應(yīng)成正比關(guān)系,通常稱為零輸入線性。6. 一階電路的零狀態(tài)響應(yīng)動態(tài)元件初始狀態(tài)為零,即Uc(O ) 0或°(0 ) 0,僅由激勵引起的響應(yīng)稱為零狀態(tài)響應(yīng)。對于電容電壓和電感電流的零狀態(tài)響應(yīng)可表示為:tUczs(t) Uc()(1

27、e ) t 0tiLzs(t) iL()(1 e)t 0式中,UCzs(t),iLzs(t)分別為電容電壓和電感電流的零狀態(tài)響應(yīng)。Uc()L()分別為電容電壓和電感電流的穩(wěn)態(tài)值,為時間常數(shù)。激勵與零狀態(tài)響應(yīng)之間存在線性關(guān)系,通常稱為零狀態(tài)線性。7. 一階電路的全響應(yīng)全響應(yīng):由動態(tài)元件初始儲能和外界激勵共同引起的響應(yīng)。全響應(yīng)=零輸入響應(yīng)+零狀態(tài)響應(yīng)=固有響應(yīng)(自然響應(yīng))+強制響應(yīng)=瞬態(tài)響應(yīng)(暫態(tài)響應(yīng))+穩(wěn)態(tài)響應(yīng)8. 一階電路的三要素法三要素:響應(yīng)的初始值 r(0 );響應(yīng)的穩(wěn)態(tài)值r()和時間常數(shù) 。一階電路的三要素式公式:tr(t) r( ) r(0 ) r( )e t 0式中,響應(yīng)的初始值 r

28、(0 )求法見4.;時間常數(shù) 的求法見5.;響應(yīng)的穩(wěn)態(tài)值r()求法: 對于換路后的電路,電容用開路替代,電感用短路替代,從而得到t 時刻的等效圖,又是另一個特殊的電阻電路,簡稱終了圖。計算需求電壓或電流的穩(wěn)態(tài)值。一階電路的三要素式公式不僅可以計算全響應(yīng),也可以計算零輸入響應(yīng)和零狀態(tài)響應(yīng)。當然,一階電路的零狀態(tài)響應(yīng)的也有一般公式:trzs(t)r( ) rzs(0 ) r( )e t 0式中,rzs(t) 階電路任意需求的零狀態(tài)響應(yīng)。rzs(° )為僅由外激勵引起響應(yīng)的初始值。理解是方便的:(°)厲(°)忌(°)。 0時刻初始值由內(nèi)激勵(初始儲能)和外激勵

29、 共同作用的結(jié)果,是滿足疊加定理的。9. 一階電路的特殊情況(1) 動態(tài)元件兩端看進去的等效電阻R= °或時,可以應(yīng)用極限的辦法來求取。(2) 換路后形成全電容回路或全電感割集,換路定則失效。解決的方法:全電容回路依據(jù)電荷守恒,即qC(°) qC(°);全電感割集依據(jù)磁鏈守恒,即L(° ) L(°)。最后可以歸結(jié)為動態(tài)元件的等效電路的方法。(3) 換路后形成全電容割集或全電感回路,換路定則仍然成立,但穩(wěn)態(tài)值的求解仍可應(yīng)用 動態(tài)元件的等效電路的方法。必須指出,即使是一階電路的特殊情況,一階電路的三要素式公式仍然成立。10.階躍函數(shù)和階躍響應(yīng)單位階

30、躍函數(shù)又稱切函數(shù)。定義為0t 0(t)dc1t 0一階電路的單位階躍響應(yīng):在單位階躍信號激勵下的零狀態(tài)響應(yīng),記為s(t)。s(t)的計算同樣應(yīng)用三要素式公式即可。階躍響應(yīng)表征了一階電路的特性,應(yīng)用它可以方便地計算任意波形信號激勵下的零狀態(tài)響應(yīng)。11. 脈沖序列作用下的一階電路這里主要討論脈沖持續(xù)時間T與脈沖間隔時間T相同的方波序列,一階電路為RC電路。(1)當 T4時,由三要素式公式,得tUs(1)0tTtUse0 t TUc(t)(t T)UR(t)(t T)UseTt2TUseT t 2TUR(t) RCddtt)特別地,當i 非常小(如t4)時,dto電阻上的響應(yīng)電壓近似等于激勵電壓的微

31、分,常稱時間常數(shù)非常小的RC電路為微分電路。(2)當T 4時,由三要素式公式,得Ucp (t)Us (Ub Us)e° t T(t T)UAet 2T取t T和t 2T ,可以求得Ua和Ub,且Ub Us U a o特別地,當非常大(如Uc(t)T)時,1RCUs( )d0。電容上的響應(yīng)電壓近似等于激勵電壓的積分,常稱時間常數(shù)非常大的RC電路為積分電路。12. 指數(shù)函數(shù)與正弦函數(shù)激勵下的一階電路任意信號作用下一階電路的全響應(yīng)公式:trp(t)、初始值r(t)rp(t) r(0 )心(0 )e t 0類似地,三個要素可以確定任意信號作用下一階電路的全響應(yīng):特解r(0)和時間常數(shù)第六章小

32、結(jié):可以用二階微分方程來描述的電路稱為二階電路。1. RLC串聯(lián)電路的零輸入響應(yīng)RLC串聯(lián)電路的二階微分方程為LCd2Uc (t)dt2RCdu,)dtUC (t) U s零輸入響應(yīng)是當激勵 Us= 0時的情況。由齊次微分方程及特征方程,可得特征根為(1)S1,2R2L2C時,21LC特征根為兩個不相同的負實數(shù),屬于過阻尼情況。特征根為兩個相同的負實數(shù),屬于臨界阻尼情況。2C時,特征根為兩個具有負實部的共軛復(fù)數(shù),屬于欠阻尼情況。響應(yīng)是衰減振蕩波形。特殊地,R= 0時,特征根的實部為零,響應(yīng)是等幅振蕩。與分析零輸入響應(yīng)類似,RLC串聯(lián)電路的零狀態(tài)響應(yīng)和全響應(yīng)同樣可分為三種情況。根據(jù)對偶原理可得到

33、 GCL并聯(lián)電路的相應(yīng)的結(jié)果。特別要說明的是,同類動態(tài)元件組成的二階電路不可能出現(xiàn)特征根為共軛復(fù)根的情況, 即衰減振蕩的過程。第七章小結(jié):1.正弦量正弦量的時域表示f (t) Fm cos( t ). 2 F cos( t式中,Fm :振幅,F(xiàn) :有效值,且Fm2F:角頻率,單位 rad/s,T -為頻率,f為周期;:初相,要求):相位。Fm(或F),(或f或T)和稱為正弦量的三要素。(2)正弦量的相位差兩個同頻正弦量分別為f1(t)FimCOS( t1)和 f2(t) F2m cos( t2),它們之間的相位差為12( t J (t 2)12,要求12。若120,稱 f1 (t)超前 f2(

34、t);若 120,稱 f1(t)滯后 f2(t);若0,稱 f1(t)和 f2(t)同相;12若稱f (t)和f2 (t)正交;若12,稱f1(t)和f2(t)反相。2. 正弦量的相量表示相量法的基礎(chǔ)是用相量(復(fù)常數(shù))表示正弦量的振幅值(或有效值)和初相。f (t)Fm COS(振幅相量f (t)、2Fcos( t )有效值相量VCR的相量形式可以清楚地看出:在正弦穩(wěn)態(tài)電路中,電阻上的電壓和電流同時域表小相量表小電阻元件u(t)Ri(t)U RIu(t)Ldi(t)電感元件dtU j LIi(t)(Cdu(t)u-1-電容元件dtI j CU 或j C3.元件VCR的相量表示(電壓、從元件電流

35、取關(guān)聯(lián)參考方向)相;電感上的電壓超前電流90 ;電容上的滯后電流90。定義感抗 Xl L,容抗Xcz U UmY I Im由此得到歐姆定律的相量形式:II m ,z為阻抗;U Um ,Y為導納。Z其中,i u)。KCLKVL4.基爾霍夫定理的相量表示時域表示相量表示Im 0Um 05.相量分析法在分析正弦穩(wěn)態(tài)電路時,由于響應(yīng)的不變,所以正弦量和它的相量之間存在一一對應(yīng)關(guān)系。我們做了如下準備:(1)正弦電壓和電流用相量表示;(2)元件VCR用相量表示;(3) 基爾霍夫定理用相量表示??梢?,相量分析法則是電阻電路分析的推廣。從數(shù)學意義上 說,從一維空間(電阻電路)的計算推廣到了二維空間(正弦穩(wěn)態(tài)電

36、路)的計算。相量分析法的步驟:(1) 作出與時域電路相對應(yīng)的相量模型;(2) 用分析電阻電路的各種定理、公式和方法乃至技巧推廣運用到正弦穩(wěn)態(tài)電路中;(3) 將求得的響應(yīng)變換成相應(yīng)時域正弦函數(shù)的形式。6. 正弦穩(wěn)態(tài)電路的功率若二端網(wǎng)絡(luò)端口電壓UUu、電流11i為關(guān)聯(lián)參考方向,則此二端網(wǎng)絡(luò)的平均功率(有功功率)PUIcos(ui )(單位:W)無功功率QUIsin(ui )(單位:Var)功率因數(shù)pfcos( ui )(當 ui,感性時標明“滯后”,反之標“超前”)視在功率SUI(單位:VA)復(fù)功率SUI ZI2 YU2P Q s( ui)(單位:va)最后指出,正弦穩(wěn)態(tài)電路復(fù)功率守恒,依此,可得

37、正弦穩(wěn)態(tài)電路有功功率守恒,無功功率守恒,但視在功率不守恒。7. 最大功率傳輸有源二端網(wǎng)絡(luò)N與一個可變負載阻抗 Zl相接,當ZlZo時負載獲得最大功率,稱負載與有源二端網(wǎng)絡(luò) N共軛匹配,負載獲得最大功率為uOcmax4Ro若負載阻抗Zl的阻抗角不能改變,也就是僅阻抗的模 Zl可變,此時,當ZlZo時,負載獲得最大功率,稱為模匹配。當然上述最大功率的公式不再成立。8. 三相電路 三相電路是指有三相電源、三相線路和三相負載組成的電路的總稱。對稱三相電路是 三相電源的電壓的振幅、頻率相等,相位彼此相差120,三相線路和三相負載完全相同的情況。(2) 對稱三相電路中的三相電源和三相負載有星形和三角形兩種

38、連接方式。設(shè)對稱三相電源是星形連接的,為UA Up 0 UB Up 120 Uc Up 120為了方便,有時也可以把它看成是三角形連接的,它們之間的關(guān)系為UAB UA UB3Up 30UBC UB Uc 3Up 90UCA Uc UA3U p 150當對稱三相電路中三相負載是星形連接時:11 Ip負載端線電流與相電流相同U1 3Up負載端線電壓與相電壓相差3倍,且線電壓超前相電壓 30當對稱三相電路中三相負載是三角形連接時:Ul Up負載端線電壓與相電壓相同11、3I p負載端線電流與相電流相差3倍,且線電流滯后相電流 30對稱三相電路三相負載的平均功率:P 3U pI p cos z . 3

39、U111 cos z(3)不對稱三相電路通常,不對稱三相電路主要是三相負載是不對稱的,而三相電源和三相線路一般是對稱的。不對稱三相電路沒有上述特點,不能采用單相電路來進行計算。一般情況下,不對稱三相電路可以看成復(fù)雜正弦穩(wěn)態(tài)電路,可用一般復(fù)雜正弦穩(wěn)態(tài)電路的方法來分析計算。在Y-Y連接的不對稱三相四線制電路中,由于負載不對稱,各相相電流并不對稱,其中線電流不再為零。這是規(guī)定中線上不準安裝開關(guān)或保險絲的原因。三相四線制電路常采用三個功率表分別測定三相功率。三相三線制電路可只用兩個功率表測量三相功率。9. 非正弦周期電路的穩(wěn)態(tài)分析(1) 由傅里葉級數(shù)理論,一般的周期信號能夠展開成無限多個正弦信號之和。

40、應(yīng)用疊加定 理,非正弦周期信號 f(t)激勵下的穩(wěn)態(tài)響應(yīng)等于其直流分量和各此諧波分量作用的疊加。(2) 非正弦周期電壓或電流的有效值等于其直流分量和各次諧波分量有效值的平方之和的 平方根。(3) 非正弦周期電路的平均功率等于其直流分量和各次諧波分量各自平均功率之和。第八章小結(jié):1.耦合電感的VCRLi、L2和M三個耦合電感是具有磁耦合的多個線圈的電路模型,以兩個線圈為例,由參數(shù)來表征理想化耦合電感。設(shè)兩線圈電壓、電流分別取關(guān)聯(lián)參考方向,則有Ui (t)1 dii(t)LiMdi2(t)dtdt-dii(t)di?(t)Ui (t)L2dtdt其相量形式為Ui jLiIi jmi2U2j MIi

41、 jL2I2上面兩式中,線圈電壓、電流取關(guān)聯(lián)參考方向,則自感電壓取正,當兩個線圈電流產(chǎn)生的磁通相互增強時互感電壓取正,否則取負。2. 耦合電感的同名端同名端:最簡單的理解是兩線圈繞法相同的一對端子稱為同名端,或所起作用相同的一對端子稱為同名端。 進一步的理解為,若兩電流分別流入這對端子, 使線圈中的磁通相互增 強的一對端子,或線圈產(chǎn)生互感電壓與自感電壓方向相同的一對端子稱為同名端。3. 耦合電感的連接及去耦等效(1) 耦合電感的串聯(lián)應(yīng)用耦合電感的 VCR,其等效電感為Leq Li L2 2M式中,順串時取正,反串時取負。(2) 耦合電感的并聯(lián)應(yīng)用耦合電感的 VCR,其等效電感為Leq式中,同側(cè)

42、并聯(lián)(順并)時取負,異側(cè)并聯(lián)(反并)時取正。(3) 耦合電感的三端連接三端連接的耦合電感可等效為三個無耦合的電感構(gòu)成的T型電路,設(shè)耦合電感同名端連接在一起時,等效為:與此端連接的電感為M,其余兩個電感分別為 Li M和L2 M。否則,改變上述三個電感M前的符號。3. 空芯變壓器電路源端的輸入阻抗,為變壓器是利用耦合線圈間的磁耦合來實現(xiàn)傳遞能量或信號的器件。一般地,變壓器線圈繞在鐵芯上,耦合系數(shù)接近1,習慣稱為鐵芯變壓器;變壓器線圈繞在非鐵磁材料的芯子上,線圈的耦合系數(shù)比較小,習慣稱為空芯變壓器。空芯變壓器電路分析依據(jù)是耦合電感的VCR。分析方法除了上述耦合電感的三端連接去耦等效方法外,還有(1

43、) 列方程法含空芯變壓器電路最終等效為與電源相接的初級回路和與負載相接的次級回路。列兩個回路方程,即可得到結(jié)果。這是最基本的分析方法。(2) 反映阻抗法當初次級之間再無其它耦合(如受控源)時,以列方程法為基礎(chǔ),歸結(jié)為:第一步:求電Zii Zfi2Z Z a11Z22式中,Z11為初級回路的阻抗,阻抗或引入阻抗;第二步:初級回路的電流為控源等效電路,次級回路的受控電壓源電壓為I2次級回路電流為j MhZ22 ;第四步:I1Us乙;第三步:根據(jù)空芯變壓器電路的受MI1,根據(jù)同名端判定取正還是取負。求需求支路的電壓或電流。Z22為次級回路的阻抗,Zfi為次級回路對初級回路的反映(3) 戴維南定理法其

44、實質(zhì)仍然是以列方程法為基礎(chǔ),首先求取負載端的戴維南等效電路:Uoc j MIo j M 字Z11式中,Io次級開路時初級回路的電流,Z11為初級回路的阻抗, 根據(jù)空芯變壓器電路的受控源等效電路的同名端判定取正還是取負。Z'22(M)2乙iZ22Zf2式中,乙2為去掉負載后的次級回路的阻抗,乙1為初級回路的阻抗,Zf2為初級回路對次級回路的反映阻抗或引入阻抗。當求負載獲最大功率的情況,應(yīng)用戴維南電路是方便的。4. 含理想變壓器電路(1)理想變壓器的VCR當耦合電感滿足:線圈無損耗;耦合系數(shù)k= 1;Li、L2和M均為無限大,且保持N1N2 (匝比)的條件。此元件模型稱為理想變壓器。理想變

45、壓器只有一個參數(shù):匝比n。由于同名端的不同,理想變壓器有兩個VCR。但可以統(tǒng)一:若假設(shè)理想變壓器兩線圈標同名端處均取為電壓正極,且匝比標有n側(cè)的初級電壓為 nu2,匝比標有1側(cè)的次級電壓為U2;流入同名端初級電流為i1;流出同名端次級電流為ni1。由于理想變壓器的 VCR是代數(shù)關(guān)系,因而它是不儲能、不耗能的即時元件,是一種無 記憶元件。(2)含理想變壓器的全耦合變壓器的VCR當一個實際變壓器滿足前兩個條件為全耦合變壓器。等效電路也很簡單:即在理想變壓器電路初級并接初級電感,或次級并接次級電感。全耦合變壓器有兩個參數(shù):n和L1;或n和L2。(3)含理想變壓器電路分析方法 依據(jù)是理想變壓器的 VC

46、R ,利用變壓、變流和變阻抗是理想變壓器的三個重要特性。阻抗、電壓源和電流源可以在理想變壓器的初、次級之間來回搬移, 使之簡化為無理想變壓 器的電路來計算。 列方程法這是求解含理想變壓器電路的一般分析方法。 戴維南定理法同樣,當求負載獲最大功率的情況,應(yīng)用戴維南電路是方便的。第九章小結(jié):1. 電路的頻率特性與網(wǎng)絡(luò)函數(shù)不同頻率的正弦信號作用于電當電路含有動態(tài)元件時由于容抗和感抗都是頻率的函數(shù),電路響路時,即使激勵的振幅和初相不變,響應(yīng)的振幅和初相也將隨著頻率的改變而改變。應(yīng)隨激勵頻率變化而變化的特性稱為電路的頻率特性。在電路分析中,電路的頻率特性用正弦穩(wěn)態(tài)電路的網(wǎng)絡(luò)函數(shù)來描述,定義為H(j )響

47、應(yīng)相量 激勵相量網(wǎng)絡(luò)函數(shù)H (j ) 般是 的復(fù)函數(shù),可寫成模和幅角的形式H(j ) |H(j )ej() H(j )()式中,H(j )是 的實函數(shù),表征了電路響應(yīng)與激勵的幅值之比(即振幅比或有效值比)隨角頻率 變化的特性,稱為電路的幅頻特性;()表征電路響應(yīng)與激勵的相位差 (相移)隨角頻率 變化的特性,稱為電路的相頻特性。幅頻特性和相頻特性總稱電路的頻率特性。網(wǎng)絡(luò)函數(shù)有六種具體的表現(xiàn)形式。2. RC電路的頻率特性用RC元件按照各種方式組成的電路能起到不同的選頻或濾波的作用。有RC低通、高通、帶通、帶阻和全通網(wǎng)絡(luò)。3. RLC串聯(lián)諧振和GCL并聯(lián)諧振電路中總電壓與總電流同相,電路呈現(xiàn)電阻性,

48、稱為諧振。RLC串聯(lián)諧振和GCL并聯(lián)諧振是對偶電路,具有對偶特性。(1) RLC串聯(lián)諧振電路1諧振條件:阻抗虛部為零,即當LC時電路發(fā)生串聯(lián)諧振。0為諧振角頻率。諧振時的特性: 阻抗虛部為零,諧振時電流Io為最大。 諧振時容抗和感抗均為C ,稱為特性阻抗。1Q 旦仝 - 定義R R R為品質(zhì)因數(shù),諧振時外加電壓全部加在電阻上,電容和電感相當于短路,即,Ulc 0。 諧振時電容電壓和電感電壓大小相等相位相反,是外加電壓的Q倍,即; Us Ur,Uc Ul QUs QUr,故串聯(lián)諧振又稱電壓諧振。 為了不過分降低串聯(lián)諧振的品質(zhì)因數(shù)適用與低內(nèi)阻的電源連接。 諧振時頻率特性:若取響應(yīng)為電流,電路的導納

49、函數(shù)為Y(j )YoUs1 jQ 一0標稱化后,表示為H(j )Y(j )Yo1 jQ0BWoQRL (單位rad/s)(2) GCL并聯(lián)諧振電路10LC時電路發(fā)生并聯(lián)諧振。諧振條件:導納虛部為零,即當0為諧振角頻率。其幅頻特性具有良好的帶通特性。Q值愈大,諧振曲線愈尖銳。通頻帶為諧振時的特性:導納虛部為零,諧振時電壓 Uo為最大。諧振時容抗和感抗均為LC ,稱為特性阻抗。Q定義0CGo LG 為品質(zhì)因數(shù),諧振時外加電流全部流入電阻,電容和電感相當于開路,即,Ilc °諧振時電容電流和電感電流大小相等相位相反,是外加電流的Q倍,即;Is Ig , Ic II QIs QIg,故并聯(lián)諧

50、振又稱電流諧振。 為了不過分降低并聯(lián)諧振的品質(zhì)因數(shù)適用與高內(nèi)阻的電源連接。 諧振時頻率特性:若取響應(yīng)為壓,電路的阻抗函數(shù)為Z(j )Zo1 jQ 一o標稱化后,表示為H(j )Z(j )ZoUo1 jQ 一oBWQ C (單位 rad/s)(3)實際并聯(lián)諧振電路在諧振頻率附近,且r時,電路可等效為GCL并聯(lián)諧振電路。此時實際并聯(lián)諧振電路由電感線圈和電容并聯(lián)組成,其中r是線圈的損耗電阻。當電路工作諧振阻抗Zo(或諧振電阻Ro)為22ZoRo一 Q Q rrn-1個諧振頻率。本書只討論三個純電抗元件組(4) 三個電抗元件組成的諧振電路 理論上講n個獨立的動態(tài)元件可以有成的諧振電路,根據(jù)其阻抗的虛部

51、為零和導納虛部為零,可分別得到一個串聯(lián)諧振頻率和一 個并聯(lián)諧振頻率。4. 電源內(nèi)阻及負載對諧振電路的影響假設(shè)實際并聯(lián)諧振電路已等效為GCL并聯(lián)諧振電路,且電源內(nèi)阻及負載均為純電阻,加載后電路的品質(zhì)因數(shù)會降低,但電路的諧振頻率不變。減少加載影響的方法有很多。如利用變壓器減少加載影響;利用電容或電感分接減少加載影響等等。5. 改善諧振特性的方法前述單振蕩回路不可能兼顧通頻帶與選擇性兩方面的要求。本章介紹更接近理想帶通特 性的兩類電路。(1)耦合振蕩回路通常稱為耦耦合振蕩回路一般由兩個或兩個以上單振蕩回路通過不同的耦合方式組成,合回路。其中又分為互感耦合串聯(lián)型回路和電容耦合并聯(lián)型回路等。它們的通頻帶

52、可達單諧 振回路的3.1倍。(2)參差調(diào)諧電路將多級單調(diào)諧電路級聯(lián)起來,當各級調(diào)諧到不同頻率時稱為參差調(diào)諧電路,本章主要介紹雙參差調(diào)諧電路。最平特性參差調(diào)諧電路的通頻帶是單諧振回路的2倍。6. LC濾波器概念前述串并聯(lián)諧振電路及耦合回路,從廣義上說,它們都是一種濾波網(wǎng)絡(luò),而濾波器則是一種對選頻特性比一般諧振電路要求更高的選頻網(wǎng)絡(luò)。常用結(jié)構(gòu)有梯型和格型之分。最簡單的濾波器有影像參數(shù)濾波器,其中包括K式濾波器和m式濾波器。近代網(wǎng)絡(luò)設(shè)計中,濾波 器的品種就更多。常見的有勃脫瓦茲型(B型)濾波器,契比雪夫型(C型)濾波器和考烏爾(CC 型) 濾波器等等。第十章小結(jié):大規(guī)模線性網(wǎng)絡(luò)分析中為了方便常用矩陣

53、表示。本章定義了關(guān)聯(lián)矩陣 A,基本回路矩陣Bf和基本割集矩陣 Qf。這時,矩陣形式的KCL為Aib=O,或Qib=O,矩陣形式的KVL為BfUb=O。 關(guān)聯(lián)矩陣A,基本回路矩陣 Bf和基本割集矩陣 Qf關(guān)系為:AB fT=0或BfAT=0 ; Qf BfT=0或Bf QfT=0矩陣形式的節(jié)點方程為AYATUn=AI SAYUS ;矩陣形式的回路方程為BfZBfTUl=BfUSBfZIS ;矩陣形式的節(jié)點方程為QfYQfTUt=QfISQfYUS 。第十一章小結(jié): 二端口網(wǎng)絡(luò)有兩個端口電壓變量和兩個端口電流變量,無源線性二端口網(wǎng)絡(luò)四個變量 中任意兩個變量可用另兩個變量線性表示。共有六種表示方法。本章僅介紹Z 參數(shù)、 Y 參數(shù)、 H 參數(shù)和 A 參數(shù)四種。各種參數(shù)之間一般情況下可以相互轉(zhuǎn)換,特殊情況下,少數(shù)二 端口網(wǎng)絡(luò)可能不存在一種或幾種參數(shù)。二端口網(wǎng)絡(luò)參數(shù)的計算有兩種方法:按定義來計算, 需要單獨計算四次; 或直接列網(wǎng)絡(luò)方程來計

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
  • 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論