下載本文檔
版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領
文檔簡介
1、一、應用勾股定理建立函數(shù)解析式例1(2000年·上海)如圖1,在半徑為6,圓心角為90°的扇形OAB的弧AB上,有一個動點P,PHOA,垂足為H,OPH的重心為G.(1)當點P在弧AB上運動時,線段GO、GP、GH中,有無長度保持不變的線段?如果有,請指出這樣的線段,并求出相應的長度.(2)設PH,GP,求關于的函數(shù)解析式,并寫出函數(shù)的定義域(即自變量的取值范圍).HMNGPOAB圖1(3)如果PGH是等腰三角形,試求出線段PH的長.二、應用比例式建立函數(shù)解析式 例2(2006年·山東)如圖2,在ABC中,AB=AC=1,點D,BD=CE=.(1)如果BAC=30
2、°,DAE=105°,試確定與之間的函數(shù)解析式;AEDCB圖2(2)如果BAC的度數(shù)為,DAE的度數(shù)為,當,滿足怎樣的關系式時,(1)中與之間的函數(shù)解析式還成立?試說明理由.例3(2005年·上海)如圖3(1),在ABC中,ABC=90°,AB=4,BC=3. 點EPED,交射線AB于點P,交射線CB于點F.OFPDEACB3(1)(1)求證: ADEAEP.(2)設OA=,AP=,求關于的函數(shù)解析式,并寫出它的定義域. (3)當BF=1時,求線段AP的長.三、應用求圖形面積的方法建立函數(shù)關系式ABCO圖8H例4(2004年·上海)如圖,在AB
3、C中,BAC=90°,AB=AC=,A的半徑為1.若點O在BC邊上運動(與點B、C不重合),設BO=,AOC的面積為.(1)求關于的函數(shù)解析式,并寫出函數(shù)的定義域.(2)以點O為圓心,BO長為半徑作圓O,求當O與A相切時,AOC的面積.一、以動態(tài)幾何為主線的壓軸題 (一)點動問題1(09年徐匯區(qū))如圖,中,點在邊上,且,以點為頂點作,分別交邊于點,交射線于點(1)當時,求的長; (2)當以點為圓心長為半徑的和以點為圓心長為半徑的相切時,求的長; (3)當以邊為直徑的與線段相切時,求的長 (二)線動問題2,在矩形ABCD中,AB3,點O在對角線AC上,直線l過點O,且與AC垂直交AD于
4、點E.(1)若直線l過點B,把ABE沿直線l翻折,點A與矩形ABCD的對稱中心A重合,求BC的長;ABCDEOlA(2)若直線l與AB相交于點F,且AOAC,設AD的長為,五邊形BCDEF的面積為S.求S關于的函數(shù)關系式,并指出的取值范圍;探索:是否存在這樣的,以A為圓心,以長為半徑的圓與直線l相切,若存在,請求出的值;若不存在,請說明理由(三)面動問題 3.如圖,在中,、分別是邊、上的兩個動點(不與、重合),且保持,以為邊,在點的異側作正方形.(1)試求的面積;(2)當邊與重合時,求正方形的邊長;(3)設,與正方形重疊部分的面積為,試求關于的函數(shù)關系式,并寫出定義域;(4)當是等腰三角形時,
5、請直接寫出的長解決動態(tài)幾何問題的常見方法有:一、 特殊探路,一般推證例2:(2004年廣州市中考題第11題)如圖,O1和O2內切于A,O1的半徑為3,O2的半徑為2,點P為O1上的任一點(與點A不重合),直線PA交O2于點C,PB切O2于點B,則的值為(A) (B) (C) (D)二、 動手實踐,操作確認例4(2003年廣州市中考試題)在O中,C為弧AB的中點,D為弧AC上任一點(與A、C不重合),則(A)AC+CB=AD+DB (B) AC+CB<AD+DB (C) AC+CB>AD+DB (D) AC+CB與AD+DB的大小關系不確定例5:如圖,過兩同心圓的小圓上任一點C分別作
6、小圓的直徑CA和非直徑的弦CD,延長CA和CD與大圓分別交于點B、E,則下列結論中正確的是( * ) (A) (B) (C)(D)的大小不確定三、 建立聯(lián)系,計算說明例6:如圖,正方形ABCD的邊長為4,點M在邊DC上,且DM=1,N為對角線AC上任意一點,則DN+MN的最小值為 .例題 如圖1,已知拋物線的頂點為A(2,1),且經過原點O,與x軸的另一個交點為B。求拋物線的解析式;(用頂點式求得拋物線的解析式為)若點C在拋物線的對稱軸上,點D在拋物線上,且以O、C、D、B四點為頂點的四邊形為平行四邊形,求D點的坐標;連接OA、AB,如圖2,在x軸下方的拋物線上是否存在點P,使得OBP與OAB
7、相似?若存在,求出P點的坐標;若不存在,說明理由。例1題圖圖1圖2練習1、已知拋物線經過及原點(1)求拋物線的解析式(由一般式得拋物線的解析式為)(2)過點作平行于軸的直線交軸于點,在拋物線對稱軸右側且位于直線下方的拋物線上,任取一點,過點作直線平行于軸交軸于點,交直線于點,直線與直線及兩坐標軸圍成矩形是否存在點,使得與相似?若存在,求出點的坐標;若不存在,說明理由(3)如果符合(2)中的點在軸的上方,連結,矩形內的四個三角形之間存在怎樣的關系?為什么?練習2、如圖,四邊形OABC是一張放在平面直角坐標系中的矩形紙片,點A在x軸上,點C在y軸上,將邊BC折疊,使點B落在邊OA的點D處。已知折疊
8、,且。Oxy練習2圖CBED(1)判斷與是否相似?請說明理由;(2)求直線CE與x軸交點P的坐標;(3)是否存在過點D的直線l,使直線l、直線CE與x軸所圍成的三角形和直線l、直線CE與y軸所圍成的三角形相似?如果存在,請直接寫出其解析式并畫出相應的直線;如果不存在,請說明理由。練習3、在平面直角坐標系中,已知二次函數(shù)的圖象與軸交于兩點(點在點的左邊),與軸交于點,其頂點的橫坐標為1,且過點和(1)求此二次函數(shù)的表達式;(由一般式得拋物線的解析式為)(2)若直線與線段交于點(不與點重合),則是否存在這樣的直線,使得以為頂點的三角形與相似?若存在,求出該直線的函數(shù)表達式及點的坐標;若不存在,請說
9、明理由;yCxBA練習3圖(3)若點是位于該二次函數(shù)對稱軸右邊圖象上不與頂點重合的任意一點,試比較銳角與的大小(不必證明),并寫出此時點的橫坐標的取值范圍OCBA練習4圖Py練習4(2008廣東湛江市)如圖所示,已知拋物線與軸交于A、B兩點,與軸交于點C(1)求A、B、C三點的坐標(2)過點A作APCB交拋物線于點P,求四邊形ACBP的面積(3)在軸上方的拋物線上是否存在一點M,過M作MG軸于點G,使以A、M、G三點為頂點的三角形與PCA相似若存在,請求出M點的坐標;否則,請說明理由練習5、已知:如圖,在平面直角坐標系中,是直角三角形,點的坐標分別為,ACOBxy(1)求過點的直線的函數(shù)表達式
10、;點,(2)在軸上找一點,連接,使得與相似(不包括全等),并求點的坐標;(3)在(2)的條件下,如分別是和上的動點,連接,設,問是否存在這樣的使得與相似,如存在,請求出的值;如不存在,請說明理由例1(2008福建福州)如圖,已知ABC是邊長為6cm的等邊三角形,動點P、Q同時從A、B兩點出發(fā),分別沿AB、BC勻速運動,其中點P運動的速度是1cm/s,點Q運動的速度是2cm/s,當點Q到達點C時,P、Q兩點都停止運動,設運動時間為t(s),解答下列問題:(1)當t2時,判斷BPQ的形狀,并說明理由;(2)設BPQ的面積為S(cm2),求S與t的函數(shù)關系式;(3)作QR/BA交AC于點R,連結PR
11、,當t為何值時,APRPRQ?分析:由t2求出BP與BQ的長度,從而可得BPQ的形狀;作QEBP于點E,將PB,QE用t表示,由=×BP×QE可得S與t的函數(shù)關系式;先證得四邊形EPRQ為平行四邊形,得PR=QE,再由APRPRQ,對應邊成比例列方程,從而t值可求.例2(2008浙江溫州)如圖,在中,分別是邊的中點,點從點出發(fā)沿方向運動,過點作于,過點作交于,當點與點重合時,點停止運動設,(1)求點到的距離的長;(2)求關于的函數(shù)關系式(不要求寫出自變量的取值范圍);(3)是否存在點,使為等腰三角形?若存在,請求出所有滿足要求的的值;若不存在,請說明理由分析:由BHDBAC,可得DH;由RQCABC,可得關于的函數(shù)關系式;由腰相等列方程可得的值;注意需分類討論.以圓為載體的動點問題動點問題是初中數(shù)學的一個難點,中考經??疾?,有一類動點問題,題中未說到圓,卻與圓有關,只要巧妙地構造圓,以圓為載體,利用圓的有關性質,問題便會迎刃而解;此類問題方法巧妙,耐人尋味。例1.在中,AC5,BC12,
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
- 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
- 6. 下載文件中如有侵權或不適當內容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 二零二五年度水資源開發(fā)打井工程合同3篇
- 2025版民營醫(yī)院藥房藥師勞動合同規(guī)范樣本4篇
- 2025版美甲店店面租賃與使用權轉讓合同范本3篇
- 2025年度車輛貸款擔保合同規(guī)范文本3篇
- 2025年度柴油發(fā)電機組銷售與知識產權保護合同4篇
- 二零二五年度存量房購買房屋維修保養(yǎng)合同4篇
- 二零二五版鋁單板研發(fā)生產采購合同4篇
- 二零二五年度森林防火安全評價咨詢合同
- 二零二五年離婚子女撫養(yǎng)費及監(jiān)護權執(zhí)行合同12篇
- 2025年版藝術品拍賣代理服務合同規(guī)范4篇
- 新能源行業(yè)市場分析報告
- 2025年天津市政建設集團招聘筆試參考題庫含答案解析
- 巖土工程勘察.課件
- 60歲以上務工免責協(xié)議書
- 2022年7月2日江蘇事業(yè)單位統(tǒng)考《綜合知識和能力素質》(管理崗)
- 初一英語語法練習
- 房地產運營管理:提升項目品質
- 你劃我猜游戲【共159張課件】
- 專升本英語閱讀理解50篇
- 中餐烹飪技法大全
- 新型電力系統(tǒng)研究
評論
0/150
提交評論