初中幾何輔助線做法大全_第1頁(yè)
初中幾何輔助線做法大全_第2頁(yè)
初中幾何輔助線做法大全_第3頁(yè)
初中幾何輔助線做法大全_第4頁(yè)
初中幾何輔助線做法大全_第5頁(yè)
已閱讀5頁(yè),還剩25頁(yè)未讀, 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說(shuō)明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡(jiǎn)介

1、規(guī)律1.如果平面上有n(n2)個(gè)點(diǎn),其中任何三點(diǎn)都不在同一直線上,那么每?jī)牲c(diǎn)畫一條直線,一共可以畫出n(n1)條.規(guī)律2.平面上的n條直線最多可把平面分成n(n+1)+1個(gè)部分.規(guī)律3.如果一條直線上有n個(gè)點(diǎn),那么在這個(gè)圖形中共有線段的條數(shù)為n(n1)條.規(guī)律4.線段(或延長(zhǎng)線)上任一點(diǎn)分線段為兩段,這兩條線段的中點(diǎn)的距離等于線段長(zhǎng)的一半.例:如圖,B在線段AC上,M是AB的中點(diǎn),N是BC的中點(diǎn).求證:MN =AC證明:M是AB的中點(diǎn),N是BC的中點(diǎn)AM = BM =AB ,BN = CN =BCMN = MB+BN =AB +BC = (AB + BC)MN =AC練習(xí):1.如圖,點(diǎn)C是線段

2、AB上的一點(diǎn),M是線段BC的中點(diǎn).求證:AM = (AB + BC) 2.如圖,點(diǎn)B在線段AC上,M是AB的中點(diǎn),N是AC的中點(diǎn).求證:MN = BC3.如圖,點(diǎn)B在線段AC上,N是AC的中點(diǎn),M是BC的中點(diǎn).求證:MN =AB 規(guī)律5.有公共端點(diǎn)的n條射線所構(gòu)成的交點(diǎn)的個(gè)數(shù)一共有n(n1)個(gè).規(guī)律6.如果平面內(nèi)有n條直線都經(jīng)過(guò)同一點(diǎn),則可構(gòu)成小于平角的角共有2n(n1)個(gè).規(guī)律7. 如果平面內(nèi)有n條直線都經(jīng)過(guò)同一點(diǎn),則可構(gòu)成n(n1)對(duì)對(duì)頂角.規(guī)律8.平面上若有n(n3)個(gè)點(diǎn),任意三個(gè)點(diǎn)不在同一直線上,過(guò)任意三點(diǎn)作三角形一共可作出n(n1)(n2)個(gè).規(guī)律9.互為鄰補(bǔ)角的兩個(gè)角平分線所成的角

3、的度數(shù)為90o.規(guī)律10.平面上有n條直線相交,最多交點(diǎn)的個(gè)數(shù)為n(n1)個(gè).規(guī)律11.互為補(bǔ)角中較小角的余角等于這兩個(gè)互為補(bǔ)角的角的差的一半.規(guī)律12.當(dāng)兩直線平行時(shí),同位角的角平分線互相平行,內(nèi)錯(cuò)角的角平分線互相平行,同旁內(nèi)角的角平分線互相垂直.例:如圖,以下三種情況請(qǐng)同學(xué)們自己證明.規(guī)律13.已知ABDE,如圖,規(guī)律如下:規(guī)律14.成“8”字形的兩個(gè)三角形的一對(duì)內(nèi)角平分線相交所成的角等于另兩個(gè)內(nèi)角和的一半.例:已知,BE、DE分別平分ABC和ADC,若A =45o,C =55o,求E的度數(shù).解:AABE=EADECCDE=ECBE得AABECCDE =EADEECBEBE平分ABC、DE

4、平分ADC,ABE=CBE,CDE=ADE2E=ACE = (AC)A =45o,C =55o,E =50o三角形部分規(guī)律15在利用三角形三邊關(guān)系證明線段不等關(guān)系時(shí),如果直接證不出來(lái),可連結(jié)兩點(diǎn)或延長(zhǎng)某邊構(gòu)造三角形,使結(jié)論中出現(xiàn)的線段在一個(gè)或幾個(gè)三角形中,再利用三邊關(guān)系定理及不等式性質(zhì)證題.例:如圖,已知D、E為ABC內(nèi)兩點(diǎn),求證:ABACBDDECE. 證法(一):將DE向兩邊延長(zhǎng),分別交AB、AC于M、N在AMN中, AMANMDDENE在BDM中,MBMDBD在CEN中,CNNECE得AMANMBMDCNNEMDDENEBDCEABACBDDECE證法(二)延長(zhǎng)BD交AC于F,延長(zhǎng)CE交

5、BF于G,在ABF和GFC和GDE中有,ABAFBDDGGFGFFCGECEDGGEDE有ABAFGFFCDGGEBDDGGFGECEDEABACBDDECE注意:利用三角形三邊關(guān)系定理及推論證題時(shí),常通過(guò)引輔助線,把求證的量(或與求證有關(guān)的量)移到同一個(gè)或幾個(gè)三角形中去然后再證題.練習(xí):已知:如圖P為ABC內(nèi)任一點(diǎn),求證:(ABBCAC)PAPBPCABBCAC規(guī)律16三角形的一個(gè)內(nèi)角平分線與一個(gè)外角平分線相交所成的銳角,等于第三個(gè)內(nèi)角的一半.例:如圖,已知BD為ABC的角平分線,CD為ABC 的外角ACE的平分線,它與BD的延長(zhǎng)線交于D.求證:A = 2D證明:BD、CD分別是ABC、AC

6、E的平分線ACE =21, ABC =22A = ACE ABCA = 2122又D =12A =2D規(guī)律17. 三角形的兩個(gè)內(nèi)角平分線相交所成的鈍角等于90o加上第三個(gè)內(nèi)角的一半.例:如圖,BD、CD分別平分ABC、ACB,求證:BDC = 90oA證明:BD、CD分別平分ABC、ACBA2122 = 180o2(12)= 180oABDC = 180o(12)(12) = 180oBDC把式代入式得 2(180oBDC)= 180oA即:360o2BDC =180oA2BDC = 180oABDC = 90oA規(guī)律18. 三角形的兩個(gè)外角平分線相交所成的銳角等于90o減去第三個(gè)內(nèi)角的一半.

7、例:如圖,BD、CD分別平分EBC、FCB,求證:BDC = 90oA證明:BD、CD分別平分EBC、FCBEBC = 21、FCB = 2221 =AACB 22 =AABC 得2(12)= AABCACBA2(12)= 180oA(12)= 90oABDC = 180o(12)BDC = 180o(90oA)BDC = 90oA規(guī)律19. 從三角形的一個(gè)頂點(diǎn)作高線和角平分線,它們所夾的角等于三角形另外兩個(gè)角差(的絕對(duì)值)的一半.例:已知,如圖,在ABC中,CB,ADBC于D,AE平分BAC.求證:EAD = (CB)證明:AE平分BACBAE =CAE =BACBAC =180o(BC)E

8、AC = 180o(BC)ADBCDAC = 90oCEAD = EACDACEAD = 180o(BC)(90oC) = 90o(BC)90oC = (CB)如果把AD平移可以得到如下兩圖,F(xiàn)DBC其它條件不變,結(jié)論為EFD = (CB).注意:同學(xué)們?cè)趯W(xué)習(xí)幾何時(shí),可以把自己證完的題進(jìn)行適當(dāng)變換,從而使自己通過(guò)解一道題掌握一類題,提高自己舉一反三、靈活應(yīng)變的能力.規(guī)律20.在利用三角形的外角大于任何和它不相鄰的內(nèi)角證明角的不等關(guān)系時(shí),如果直接證不出來(lái),可連結(jié)兩點(diǎn)或延長(zhǎng)某邊,構(gòu)造三角形,使求證的大角在某個(gè)三角形外角的位置上,小角處在內(nèi)角的位置上,再利用外角定理證題.例:已知D為ABC內(nèi)任一點(diǎn),

9、求證:BDCBAC證法(一):延長(zhǎng)BD交AC于E,BDC是EDC的外角,BDCDEC同理:DECBACBDCBAC證法(二):連結(jié)AD,并延長(zhǎng)交BC于FBDF是ABD的外角,BDFBAD同理CDFCADBDFCDFBADCAD即:BDCBAC規(guī)律21.有角平分線時(shí)常在角兩邊截取相等的線段,構(gòu)造全等三角形.例:已知,如圖,AD為ABC的中線且1 = 2,3 = 4,求證:BECFEF證明:在DA上截取DN = DB,連結(jié)NE、NF,則DN = DC在BDE和NDE中,DN = DB1 = 2ED = EDBDENDEBE = NE同理可證:CF = NF在EFN中,ENFNEFBECFEF規(guī)律2

10、2.有以線段中點(diǎn)為端點(diǎn)的線段時(shí),常加倍延長(zhǎng)此線段構(gòu)造全等三角形.例:已知,如圖,AD為ABC的中線,且1 = 2,3 = 4,求證:BECFEF證明:延長(zhǎng)ED到M,使DM = DE,連結(jié)CM、FMBDE和CDM中, BD = CD1 = 5ED = MDBDECDMCM = BE又1 = 2,3 = 4123 4 = 180o3 2 = 90o即EDF = 90oFDM = EDF = 90oEDF和MDF中ED = MDFDM = EDFDF = DFEDFMDFEF = MF在CMF中,CFCM MFBECFEF(此題也可加倍FD,證法同上)規(guī)律23.在三角形中有中線時(shí),常加倍延長(zhǎng)中線構(gòu)造

11、全等三角形.例:已知,如圖,AD為ABC的中線,求證:ABAC2AD證明:延長(zhǎng)AD至E,使DE = AD,連結(jié)BEAD為ABC的中線BD =CD在ACD和EBD中BD = CD 1 = 2AD = EDACDEBDABE中有ABBEAEABAC2AD規(guī)律24.截長(zhǎng)補(bǔ)短作輔助線的方法截長(zhǎng)法:在較長(zhǎng)的線段上截取一條線段等于較短線段;補(bǔ)短法:延長(zhǎng)較短線段和較長(zhǎng)線段相等.這兩種方法統(tǒng)稱截長(zhǎng)補(bǔ)短法.當(dāng)已知或求證中涉及到線段a、b、c、d有下列情況之一時(shí)用此種方法:aba±b = ca±b = c±d例:已知,如圖,在ABC中,ABAC,1 = 2,P為AD上任一點(diǎn),求證:A

12、BACPBPC證明:截長(zhǎng)法:在AB上截取AN = AC,連結(jié)PN在APN和APC中,AN = AC1 = 2AP = APAPNAPCPC = PNBPN中有PBPCBNPBPCABAC補(bǔ)短法:延長(zhǎng)AC至M,使AM = AB,連結(jié)PM在ABP和AMP中AB = AM 1 = 2AP = APABPAMPPB = PM又在PCM中有CM PMPCABACPBPC練習(xí):1.已知,在ABC中,B = 60o,AD、CE是ABC的角平分線,并且它們交于點(diǎn)O求證:AC = AECD2.已知,如圖,ABCD1 = 2 ,3 = 4. 求證:BC = ABCD 規(guī)律25.證明兩條線段相等的步驟:觀察要證線段

13、在哪兩個(gè)可能全等的三角形中,然后證這兩個(gè)三角形全等。若圖中沒(méi)有全等三角形,可以把求證線段用和它相等的線段代換,再證它們所在的三角形全等.如果沒(méi)有相等的線段代換,可設(shè)法作輔助線構(gòu)造全等三角形.例:如圖,已知,BE、CD相交于F,B = C,1 = 2,求證:DF = EF證明:ADF =B3 AEF = C4又3 = 4B = CADF = AEF在ADF和AEF中ADF = AEF1 = 2 AF = AFADFAEFDF = EF規(guī)律26.在一個(gè)圖形中,有多個(gè)垂直關(guān)系時(shí),常用同角(等角)的余角相等來(lái)證明兩個(gè)角相等.例:已知,如圖RtABC中,AB = AC,BAC = 90o,過(guò)A作任一條直

14、線AN,作BDAN于D,CEAN于E,求證:DE = BDCE證明:BAC = 90o, BDAN12 = 90o13 = 90o2 = 3BDAN CEANBDA =AEC = 90o在ABD和CAE中,BDA =AEC2 = 3AB = ACABDCAEBD = AE且AD = CEAEAD = BDCEDE = BDCE規(guī)律27.三角形一邊的兩端點(diǎn)到這邊的中線所在的直線的距離相等.例:AD為ABC的中線,且CFAD于F,BEAD的延長(zhǎng)線于E求證:BE = CF證明:(略)規(guī)律28.條件不足時(shí)延長(zhǎng)已知邊構(gòu)造三角形.例:已知AC = BD,ADAC于A,BCBD于B求證:AD = BC證明:

15、分別延長(zhǎng)DA、CB交于點(diǎn)EADAC BCBDCAE = DBE = 90o在DBE和CAE中DBE =CAEBD = ACE =EDBECAEED = EC,EB = EAEDEA = EC EBAD = BC規(guī)律29.連接四邊形的對(duì)角線,把四邊形問(wèn)題轉(zhuǎn)化成三角形來(lái)解決問(wèn)題.例:已知,如圖,ABCD,ADBC求證:AB = CD證明:連結(jié)AC(或BD)ABCD,ADBC1 = 2 在ABC和CDA中,1 = 2 AC = CA3 = 4 ABCCDAAB = CD練習(xí):已知,如圖,AB = DC,AD = BC,DE = BF,求證:BE = DF規(guī)律30.有和角平分線垂直的線段時(shí),通常把這條

16、線段延長(zhǎng)??蓺w結(jié)為“角分垂等腰歸”.例:已知,如圖,在RtABC中,AB = AC,BAC = 90o,1 = 2 ,CEBD的延長(zhǎng)線于E求證:BD = 2CE證明:分別延長(zhǎng)BA、CE交于FBECFBEF =BEC = 90o在BEF和BEC中1 = 2 BE = BEBEF =BECBEFBECCE = FE =CFBAC = 90o , BECFBAC = CAF = 90o1BDA = 90o1BFC = 90oBDA = BFC在ABD和ACF中BAC = CAFBDA = BFCAB = ACABDACFBD = CFBD = 2CE練習(xí):已知,如圖,ACB = 3B,1 =2,CD

17、AD于D,求證:ABAC = 2CD規(guī)律31.當(dāng)證題有困難時(shí),可結(jié)合已知條件,把圖形中的某兩點(diǎn)連接起來(lái)構(gòu)造全等三角形.例:已知,如圖,AC、BD相交于O,且AB = DC,AC = BD,求證:A = D證明:(連結(jié)BC,過(guò)程略)規(guī)律32.當(dāng)證題缺少線段相等的條件時(shí),可取某條線段中點(diǎn),為證題提供條件.例:已知,如圖,AB = DC,A = D求證:ABC = DCB證明:分別取AD、BC中點(diǎn)N、M,連結(jié)NB、NM、NC(過(guò)程略)規(guī)律33.有角平分線時(shí),常過(guò)角平分線上的點(diǎn)向角兩邊做垂線,利用角平分線上的點(diǎn)到角兩邊距離相等證題.例:已知,如圖,1 = 2 ,P為BN上一點(diǎn),且PDBC于D,ABBC

18、 = 2BD,求證:BAPBCP = 180o證明:過(guò)P作PEBA于EPDBC,1 = 2 PE = PD在RtBPE和RtBPD中BP = BPPE = PDRtBPERtBPDBE = BDABBC = 2BD,BC = CDBD,AB = BEAEAE =CDPEBE,PDBCPEB =PDC = 90o在PEA和PDC中PE = PDPEB =PDCAE =CDPEAPDCPCB = EAPBAPEAP = 180oBAPBCP = 180o練習(xí):1.已知,如圖,PA、PC分別是ABC外角MAC與NCA的平分線,它們交于P,PDBM于M,PFBN于F,求證:BP為MBN的平分線2. 已

19、知,如圖,在ABC中,ABC =100o,ACB = 20o,CE是ACB的平分線,D是AC上一點(diǎn),若CBD = 20o,求CED的度數(shù)。規(guī)律34.有等腰三角形時(shí)常用的輔助線作頂角的平分線,底邊中線,底邊高線例:已知,如圖,AB =AC,BDAC于D,求證:BAC = 2DBC證明:(方法一)作BAC的平分線AE,交BC于E,則1 = 2 = BAC又AB =ACAEBC2ACB = 90oBDACDBCACB = 90o2 = DBCBAC = 2DBC(方法二)過(guò)A作AEBC于E(過(guò)程略)(方法三)取BC中點(diǎn)E,連結(jié)AE(過(guò)程略)有底邊中點(diǎn)時(shí),常作底邊中線例:已知,如圖,ABC中,AB =

20、AC,D為BC中點(diǎn),DEAB于E,DFAC于F,求證:DE = DF證明:連結(jié)AD.D為BC中點(diǎn),BD = CD又AB =ACAD平分BACDEAB,DFACDE = DF將腰延長(zhǎng)一倍,構(gòu)造直角三角形解題例:已知,如圖,ABC中,AB =AC,在BA延長(zhǎng)線和AC上各取一點(diǎn)E、F,使AE = AF,求證:EFBC證明:延長(zhǎng)BE到N,使AN = AB,連結(jié)CN,則AB = AN = ACB = ACB, ACN = ANCBACBACNANC = 180o2BCA2ACN = 180oBCAACN = 90o即BCN = 90oNCBCAE = AFAEF = AFE又BAC = AEF AFEB

21、AC = ACN ANCBAC =2AEF = 2ANCAEF = ANCEFNCEFBC常過(guò)一腰上的某一已知點(diǎn)做另一腰的平行線例:已知,如圖,在ABC中,AB = AC,D在AB上,E在AC延長(zhǎng)線上,且BD = CE,連結(jié)DE交BC于F求證:DF = EF證明:(證法一)過(guò)D作DNAE,交BC于N,則DNB = ACB,NDE = E,AB = AC,B = ACBB =DNBBD = DN又BD = CE DN = EC在DNF和ECF中1 = 2NDF =EDN = ECDNFECFDF = EF(證法二)過(guò)E作EMAB交BC延長(zhǎng)線于M,則EMB =B(過(guò)程略)常過(guò)一腰上的某一已知點(diǎn)做底

22、的平行線例:已知,如圖,ABC中,AB =AC,E在AC上,D在BA延長(zhǎng)線上,且AD = AE,連結(jié)DE求證:DEBC證明:(證法一)過(guò)點(diǎn)E作EFBC交AB于F,則AFE =BAEF =CAB = ACB =CAFE =AEFAD = AEAED =ADE又AFEAEFAEDADE = 180o2AEF2AED = 90o即FED = 90oDEFE又EFBCDEBC(證法二)過(guò)點(diǎn)D作DNBC交CA的延長(zhǎng)線于N,(過(guò)程略)(證法三)過(guò)點(diǎn)A作AMBC交DE于M,(過(guò)程略)常將等腰三角形轉(zhuǎn)化成特殊的等腰三角形-等邊三角形例:已知,如圖,ABC中,AB =AC,BAC = 80o ,P為形內(nèi)一點(diǎn),若

23、PBC = 10oPCB = 30o求PAB的度數(shù).解法一:以AB為一邊作等邊三角形,連結(jié)CE則BAE =ABE = 60oAE = AB = BEAB = ACAE = AC ABC =ACBAEC =ACEEAC =BACBAE = 80o60o = 20oACE = (180oEAC)= 80oACB= (180oBAC)= 50oBCE =ACEACB = 80o50o = 30oPCB = 30oPCB = BCEABC =ACB = 50o, ABE = 60oEBC =ABEABC = 60o50o =10oPBC = 10oPBC = EBC在PBC和EBC中PBC = EBC

24、BC = BCPCB = BCEPBCEBCBP =BEAB = BEAB =BPBAP =BPAABP =ABCPBC = 50o10o = 40oPAB = (180oABP)= 70o解法二:以AC為一邊作等邊三角形,證法同一。解法三:以BC為一邊作等邊三角形BCE,連結(jié)AE,則EB = EC = BC,BEC =EBC = 60oEB = ECE在BC的中垂線上同理A在BC的中垂線上EA所在的直線是BC的中垂線EABCAEB = BEC = 30o =PCB由解法一知:ABC = 50oABE = EBCABC = 10o =PBCABE =PBC,BE = BC,AEB =PCBAB

25、EPBCAB = BPBAP =BPAABP =ABCPBC = 50o10o = 40oPAB = (180oABP) = (180o40o)= 70o規(guī)律35.有二倍角時(shí)常用的輔助線構(gòu)造等腰三角形使二倍角是等腰三角形的頂角的外角例:已知,如圖,在ABC中,1 = 2,ABC = 2C,求證:ABBD = AC證明:延長(zhǎng)AB到E,使BE = BD,連結(jié)DE則BED = BDEABD =EBDEABC =2EABC = 2CE = C 在AED和ACD中E = C1 = 2AD = ADAEDACDAC = AEAE = ABBEAC = ABBE即ABBD = AC平分二倍角例:已知,如圖,

26、在ABC中,BDAC于D,BAC = 2DBC求證:ABC = ACB證明:作BAC的平分線AE交BC于E,則BAE = CAE = DBCBDACCBD C = 90oCAEC= 90oAEC= 180oCAEC= 90oAEBCABCBAE = 90oCAEC= 90oBAE = CAEABC = ACB加倍小角例:已知,如圖,在ABC中,BDAC于D,BAC = 2DBC求證:ABC = ACB證明:作FBD =DBC,BF交AC于F(過(guò)程略)規(guī)律36.有垂直平分線時(shí)常把垂直平分線上的點(diǎn)與線段兩端點(diǎn)連結(jié)起來(lái).例:已知,如圖,ABC中,AB = AC,BAC = 120o,EF為AB的垂直

27、平分線,EF交BC于F,交AB于E求證:BF =FC證明:連結(jié)AF,則AF = BFB =FABAB = ACB =CBAC = 120oB =CBAC =(180oBAC) = 30oFAB = 30oFAC =BACFAB = 120o30o =90o又C =30oAF = FCBF =FC練習(xí):已知,如圖,在ABC中,CAB的平分線AD與BC的垂直平分線DE交于點(diǎn)D,DMAB于M,DNAC延長(zhǎng)線于N求證:BM = CN規(guī)律37.有垂直時(shí)常構(gòu)造垂直平分線.例:已知,如圖,在ABC中,B =2C,ADBC于D求證:CD = ABBD證明:(一)在CD上截取DE = DB,連結(jié)AE,則AB =

28、 AEB =AEBB =2CAEB =2C又AEB = CEACC =EACAE = CE又CD =DECECD = BDAB(二)延長(zhǎng)CB到F,使DF = DC,連結(jié)AF則AF =AC(過(guò)程略)規(guī)律38.有中點(diǎn)時(shí)常構(gòu)造垂直平分線.例:已知,如圖,在ABC中,BC = 2AB, ABC =2C,BD = CD求證:ABC為直角三角形證明:過(guò)D作DEBC,交AC于E,連結(jié)BE,則BE = CE,C =EBCABC =2CABE =EBCBC = 2AB,BD = CDBD = AB在ABE和DBE中AB = BDABE =EBCBE = BEABEDBEBAE = BDEBDE = 90oBAE

29、 = 90o即ABC為直角三角形規(guī)律39.當(dāng)涉及到線段平方的關(guān)系式時(shí)常構(gòu)造直角三角形,利用勾股定理證題.例:已知,如圖,在ABC中,A = 90o,DE為BC的垂直平分線求證:BE2AE2 = AC2證明:連結(jié)CE,則BE = CEA = 90oAE2AC2 = EC2AE2AC2= BE2BE2AE2 = AC2練習(xí):已知,如圖,在ABC中,BAC =90o,AB = AC,P為BC上一點(diǎn)求證:PB2PC2= 2PA2規(guī)律40.條件中出現(xiàn)特殊角時(shí)常作高把特殊角放在直角三角形中.例:已知,如圖,在ABC中,B = 45o,C = 30o,AB =,求AC的長(zhǎng). 解:過(guò)A作ADBC于DBBAD

30、= 90o,B =45o,B = BAD = 45o,AD = BDAB2 = AD2BD2,AB =AD = 1C = 30o,ADBCAC = 2AD = 2四邊形部分規(guī)律41.平行四邊形的兩鄰邊之和等于平行四邊形周長(zhǎng)的一半.例:已知,ABCD的周長(zhǎng)為60cm,對(duì)角線AC、BD相交于點(diǎn)O,AOB的周長(zhǎng)比BOC的周長(zhǎng)多8cm,求這個(gè)四邊形各邊長(zhǎng).解:四邊形ABCD為平行四邊形AB = CD,AD = CB,AO = COABCDDACB = 60AOABOB(OBBCOC) = 8ABBC = 30,ABBC =8AB = CD =19,BC = AD = 11答:這個(gè)四邊形各邊長(zhǎng)分別為19

31、cm、11cm、19cm、11cm.規(guī)律42.平行四邊形被對(duì)角線分成四個(gè)小三角形,相鄰兩個(gè)三角形周長(zhǎng)之差等于鄰邊之差.(例題如上)規(guī)律43.有平行線時(shí)常作平行線構(gòu)造平行四邊形例:已知,如圖,RtABC,ACB =90o,CDAB于D,AE平分CAB交CD于F,過(guò)F作FHAB交BC于H求證:CE = BH證明:過(guò)F作FPBC交AB于P,則四邊形FPBH為平行四邊形B =FPA,BH = FPACB = 90o,CDAB5CAB = 45o,BCAB = 90o5 =B5 =FPA又1 =2,AF = AFCAFPAFCF = FP4 =15,3 =2B3 =4CF = CECE = BH練習(xí):已

32、知,如圖,ABEFGH,BE = GC求證:AB = EFGH規(guī)律44.有以平行四邊形一邊中點(diǎn)為端點(diǎn)的線段時(shí)常延長(zhǎng)此線段.例:已知,如圖,在ABCD中,AB = 2BC,M為AB中點(diǎn)求證:CMDM證明:延長(zhǎng)DM、CB交于N四邊形ABCD為平行四邊形AD =BC,ADBCA = NBA ADN =N又AM = BMAMDBMNAD = BNBN = BCAB = 2BC,AM = BMBM = BC = BN1 =2,3 =N123N = 180o,13 = 90oCMDM規(guī)律45.平行四邊形對(duì)角線的交點(diǎn)到一組對(duì)邊距離相等.如圖:OE = OF規(guī)律46.平行四邊形一邊(或這邊所在的直線)上的任意

33、一點(diǎn)與對(duì)邊的兩個(gè)端點(diǎn)的連線所構(gòu)成的三角形的面積等于平行四邊形面積的一半.如圖:SBEC =SABCD規(guī)律47.平行四邊形內(nèi)任意一點(diǎn)與四個(gè)頂點(diǎn)的連線所構(gòu)成的四個(gè)三角形中,不相鄰的兩個(gè)三角形的面積之和等于平行四邊形面積的一半.如圖:SAOB SDOC = SBOCSAOD = SABCD規(guī)律48.任意一點(diǎn)與同一平面內(nèi)的矩形各點(diǎn)的連線中,不相鄰的兩條線段的平方和相等.如圖:AO2OC2 = BO2 DO2規(guī)律49.平行四邊形四個(gè)內(nèi)角平分線所圍成的四邊形為矩形.如圖:四邊形GHMN是矩形(規(guī)律45規(guī)律49請(qǐng)同學(xué)們自己證明)規(guī)律50.有垂直時(shí)可作垂線構(gòu)造矩形或平行線.例:已知,如圖,E為矩形ABCD的邊

34、AD上一點(diǎn),且BE = ED,P為對(duì)角線BD上一點(diǎn),PFBE于F,PGAD于G求證:PFPG = AB證明:證法一:過(guò)P作PHAB于H,則四邊形AHPG為矩形AH = GP PHADADB =HPBBE = DEEBD = ADBHPB =EBD又PFB =BHP = 90oPFBBHPHB = FPAHHB = PGPF即AB = PGPF證法二:延長(zhǎng)GP交BC于N,則四邊形ABNG為矩形,(證明略)規(guī)律51.直角三角形常用輔助線方法:作斜邊上的高例:已知,如圖,若從矩形ABCD的頂點(diǎn)C作對(duì)角線BD的垂線與BAD的平分線交于點(diǎn)E求證:AC = CE證明:過(guò)A作AFBD,垂足為F,則AFEGF

35、AE = AEG四邊形ABCD為矩形BAD = 90oOA = ODBDA =CADAFBDABDADB = ABDBAF = 90oBAF =ADB =CADAE為BAD的平分線BAE =DAEBAEBAF =DAEDAC即FAE =CAECAE =AEGAC = EC作斜邊中線,當(dāng)有下列情況時(shí)常作斜邊中線:有斜邊中點(diǎn)時(shí)例:已知,如圖,AD、BE是ABC的高, F是DE的中點(diǎn),G是AB的中點(diǎn)求證:GFDE證明:連結(jié)GE、GDAD、BE是ABC的高,G是AB的中點(diǎn)GE = AB,GD = ABGE =GDF是DE的中點(diǎn)GFDE有和斜邊倍分關(guān)系的線段時(shí)例:已知,如圖,在ABC中,D是BC延長(zhǎng)線上

36、一點(diǎn),且DABA于A,AC = BD求證:ACB =2B證明:取BD中點(diǎn)E,連結(jié)AE,則AE = BE = BD1 =BAC = BDAC = AEACB =2 2 =1B2 =2BACB =2B規(guī)律52.正方形一條對(duì)角線上一點(diǎn)到另一條對(duì)角線上的兩端距離相等.例:已知,如圖,過(guò)正方形ABCD對(duì)角線BD上一點(diǎn)P,作PEBC于E,作PFCD于F求證:AP = EF證明:連結(jié)AC 、PC四邊形ABCD為正方形BD垂直平分AC,BCD = 90oAP = CPPEBC,PFCD,BCD = 90o四邊形PECF為矩形PC = EFAP = EF規(guī)律53.有正方形一邊中點(diǎn)時(shí)常取另一邊中點(diǎn).例:已知,如圖

37、,正方形ABCD中,M為AB的中點(diǎn),MNMD,BN平分CBE并交MN于N求證:MD = MN證明:取AD的中點(diǎn)P,連結(jié)PM,則DP = PA =AD四邊形ABCD為正方形AD = AB, A =ABC= 90o1AMD = 90o,又DMMN2AMD = 90o1 =2M為AB中點(diǎn)AM = MB =ABDP = MB AP = AMAPM =AMP = 45oDPM =135oBN平分CBECBN= 45oMBN =MBCCBN = 90o45o= 135o即DPM =MBNDPMMBNDM = MN注意:把M改為AB上任一點(diǎn),其它條件不變,結(jié)論仍然成立。練習(xí):已知,Q為正方形ABCD的CD邊

38、的中點(diǎn),P為CQ上一點(diǎn),且AP = PCBC求證:BAP = 2QAD規(guī)律54.利用正方形進(jìn)行旋轉(zhuǎn)變換旋轉(zhuǎn)變換就是當(dāng)圖形具有鄰邊相等這一特征時(shí),可以把圖形的某部分繞相等鄰邊的公共端點(diǎn)旋轉(zhuǎn)到另一位置的引輔助線方法.旋轉(zhuǎn)變換主要用途是把分散元素通過(guò)旋轉(zhuǎn)集中起來(lái),從而為證題創(chuàng)造必要的條件.旋轉(zhuǎn)變換經(jīng)常用于等腰三角形、等邊三角形及正方形中.例:已知,如圖,在ABC中,AB = AC,BAC = 90o,D為BC邊上任一點(diǎn)求證:2AD2 = BD2CD2證明:把ABD繞點(diǎn)A逆時(shí)針旋轉(zhuǎn)90o得ACEBD = CE B = ACEBAC = 90oDAE= 90oDE2 = AD2AE2 = 2AD2BAC

39、B = 90oDCE = 90oCD2CE2 = DE22AD2 = BD2CD2注意:把ADC繞點(diǎn)A順時(shí)針旋轉(zhuǎn)90o也可,方法同上。練習(xí):已知,如圖,在正方形ABCD中,E為AD上一點(diǎn),BF平分CBE交CD于F求證:BE = CFAE規(guī)律55.有以正方形一邊中點(diǎn)為端點(diǎn)的線段時(shí),常把這條線段延長(zhǎng),構(gòu)造全等三角形.例:如圖,在正方形ABCD中,E、F分別是CD、DA的中點(diǎn),BE與CF交于P點(diǎn)求證:AP = AB證明:延長(zhǎng)CF交BA的延長(zhǎng)線于K四邊形ABCD為正方形BC = AB = CD = DA BCD =D =BAD = 90oE、F分別是CD、DA的中點(diǎn)CE = CD DF = AF =

40、ADCE = DFBCECDFCBE =DCFBCFDCF = 90oBCFCBE = 90oBECF又D =DAK = 90o DF = AF 1 =2CDFKAFCD = KABA = KA又BECFAP = AB練習(xí):如圖,在正方形ABCD中,Q在CD上,且DQ = QC,P在BC上,且AP = CDCP求證:AQ平分DAP規(guī)律56.從梯形的一個(gè)頂點(diǎn)作一腰的平行線,把梯形分成一個(gè)平行四邊形和一個(gè)三角形.例:已知,如圖,等腰梯形ABCD中,ADBC,AD = 3,AB = 4,BC = 7求B的度數(shù)解:過(guò)A作AECD交BC于E,則四邊形AECD為平行四邊形AD = EC, CD = AEA

41、B = CD = 4, AD = 3, BC = 7 BE = AE = AB = 4ABE為等邊三角形B = 60o規(guī)律57.從梯形同一底的兩端作另一底所在直線的垂線,把梯形轉(zhuǎn)化成一個(gè)矩形和兩個(gè)三角形.例:已知,如圖,在梯形ABCD中,ADBC,AB = AC,BAC = 90o,BD = BC,BD交AC于O求證:CO = CD證明:過(guò)A、D分別作AEBC,DFBC,垂足分別為E、F則四邊形AEFD為矩形AE = DFAB = AC,AEBC,BAC = 90o,AE = BE = CE =BC,ACB = 45oBC = BDAE = DF = BD又DFBCDBC = 30oBD =

42、BCBDC =BCD =(180oDBC)= 75oDOC =DBCACB = 30o45o = 75oBDC =DOCCO = CD規(guī)律58.從梯形的一個(gè)頂點(diǎn)作一條對(duì)角線的平行線,把梯形轉(zhuǎn)化成平行四邊形和三角形.例:已知,如圖,等腰梯形ABCD中,ADBC,ACBD,ADBC = 10,DEBC于E求DE的長(zhǎng).解:過(guò)D作DFAC,交BC的延長(zhǎng)線于F,則四邊形ACFD為平行四邊形AC = DF, AD = CF四邊形ABCD為等腰梯形AC = DBBD = FDDEBC BE = EF =BF=(BCCF) =(BCAD)=×10 = 5ACDF,BDACBDDFBE = FEDE

43、= BE =EF = BF = 5答:DE的長(zhǎng)為5.規(guī)律59.延長(zhǎng)梯形兩腰使它們交于一點(diǎn),把梯形轉(zhuǎn)化成三角形.例:已知,如圖,在四邊形ABCD中,有AB = DC,B =C,ADBC求證:四邊形ABCD等腰梯形證明:延長(zhǎng)BA、CD,它們交于點(diǎn)EB =CEB = EC又AB = DCAE =DE EAD =EDAEEADEDA = 180oBCE = 180oEAD =BADBCADBC,B =C四邊形ABCD等腰梯形(此題還可以過(guò)一頂點(diǎn)作AB或CD的平行線;也可以過(guò)A、D作BC的垂線)規(guī)律60.有梯形一腰中點(diǎn)時(shí),常過(guò)此中點(diǎn)作另一腰的平行線,把梯形轉(zhuǎn)化成平行四邊形.例:已知,如圖,梯形ABCD中

44、,ADBC,E為CD中點(diǎn),EFAB于F求證:S梯形ABCD = EF·AB證明:過(guò)E作MNAB,交AD的延長(zhǎng)線于M,交BC于N,則四邊形ABNM為平行四邊形EFABSABNM = AB·EFADBCM =MNC又DE = CE1 =2CENDEMSCEN = SDEMS梯形ABCD = S五邊形ABNEDSCEN = S五邊形ABNEDSDEM = S梯形ABCD = EF·AB規(guī)律61.有梯形一腰中點(diǎn)時(shí),也常把一底的端點(diǎn)與中點(diǎn)連結(jié)并延長(zhǎng)與另一底的延長(zhǎng)線相交,把梯形轉(zhuǎn)換成三角形.例:已知,如圖,直角梯形ABCD中,ADBC,ABAD于A,DE = EC = BC求

45、證:AEC = 3DAE證明:連結(jié)BE并延長(zhǎng)交AD的延長(zhǎng)線于NADBC3 =N又1 =2 ED = ECDENCEBBE = EN DN = BCABADAE = EN = BEN =DAEAEB =NDAE = 2DAEDE = BC BC = DNDE = DNN =11 =2 N =DAE2 =DAEAEB2 = 2DAEDAE即AEC = 3DAE規(guī)律62.梯形有底的中點(diǎn)時(shí),常過(guò)中點(diǎn)做兩腰的平行線.例:已知,如圖,梯形ABCD中,ADBC,ADBC,E、F分別是AD、BC的中點(diǎn),且EFBC求證:B =C證明:過(guò)E作EMAB, ENCD,交BC于M、N,則得ABME,NCDEAE = B

46、M,AB= EM,DE = CN,CD = NEAE = DEBM = CN又BF = CFFM = FN又EFBCEM = EN1 =2ABEM, CDEN1 =B 2 =CB = C規(guī)律63.任意四邊形的對(duì)角線互相垂直時(shí),它們的面積都等于對(duì)角線乘積的一半.例:已知,如圖,梯形ABCD中,ADBC,AC與BD交于O,且ACBD,AC = 4,BD = 3.4,求梯形ABCD的面積.解:ACBDSABD =AO·BDSBCD = CO·BDS梯形ABCD = SABDSBCD=AO·BDCO·BD =(AOCO)·BD即S梯形ABCD = AC

47、·BD = 答:梯形ABCD面積為6.8.規(guī)律64.有線段中點(diǎn)時(shí),常過(guò)中點(diǎn)作平行線,利用平行線等分線段定理的推論證題.例:已知:ABC中,D為AB中點(diǎn),E為BC的三等分點(diǎn),(BECE)AE、CD交于點(diǎn)F求證:F為CD的中點(diǎn)證明:過(guò)D作DNAE交BC于ND為AB中點(diǎn)BN = EN又E為BC的三等分點(diǎn)BN = EN = CEDNAEF為CD的中點(diǎn)規(guī)律65.有下列情況時(shí)常作三角形中位線.有一邊中點(diǎn);有線段倍分關(guān)系;有兩邊(或兩邊以上)中點(diǎn).例:如圖,AE為正方形ABCD中BAC的平分線,AE分別交BD、BC于F、E,AC、BD相交于O求證:OF =CE證明:取AE的中點(diǎn)N,連結(jié)ON,則ON為ACE的中位線ONCE,ON =CE6 =ONE四邊形ABCD為正方形3 =4 = 45o5 =31, 6

溫馨提示

  • 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。

評(píng)論

0/150

提交評(píng)論