高考數(shù)學備考沖刺之易錯點點睛系列專題平面解析幾何(教師)_第1頁
高考數(shù)學備考沖刺之易錯點點睛系列專題平面解析幾何(教師)_第2頁
高考數(shù)學備考沖刺之易錯點點睛系列專題平面解析幾何(教師)_第3頁
高考數(shù)學備考沖刺之易錯點點睛系列專題平面解析幾何(教師)_第4頁
高考數(shù)學備考沖刺之易錯點點睛系列專題平面解析幾何(教師)_第5頁
已閱讀5頁,還剩40頁未讀 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)

文檔簡介

1、平面解析幾何一、高考預測解析幾何初步的內(nèi)容主要是直線與方程、圓與方程和空間直角坐標系,該部分內(nèi)容是整個解析幾何的基礎(chǔ),在解析幾何的知識體系中占有重要位置,但由于在高中階段平面解析幾何的主要內(nèi)容是圓錐曲線與方程,故在該部分高考考查的分值不多,在高考試卷中一般就是一個選擇題或者填空題考查直線與方程、圓與方程的基本問題,偏向于考查直線與圓的綜合,試題難度不大,對直線方程、圓的方程的深入考查則與圓錐曲線結(jié)合進行根據(jù)近年來各地高考的情況,解析幾何初步的考查是穩(wěn)定的,預計2012年該部分的考查仍然是以選擇題或者填空題考查直線與圓的基礎(chǔ)知識和方法,而在解析幾何解答題中考查該部分知識的應(yīng)用圓錐曲線與方程是高考

2、考查的核心內(nèi)容之一,在高考中一般有12個選擇題或者填空題,一個解答題選擇題或者填空題在于有針對性地考查橢圓、雙曲線、拋物線的定義、標準方程和簡單幾何性質(zhì)及其應(yīng)用,試題考查主要針對圓錐曲線本身,綜合性較小,試題的難度一般不大;解答題中主要是以橢圓為基本依托,考查橢圓方程的求解、考查直線與曲線的位置關(guān)系,考查數(shù)形結(jié)合思想、函數(shù)與方程思想、等價轉(zhuǎn)化思想、分類與整合思想等數(shù)學思想方法,這道解答題往往是試卷的壓軸題之一由于圓錐曲線與方程是傳統(tǒng)的高中數(shù)學主干知識,在高考命題上已經(jīng)比較成熟,考查的形式和試題的難度、類型已經(jīng)較為穩(wěn)定,預計2012年仍然是這種考查方式,不會發(fā)生大的變化解析幾何的知識主線很清晰,

3、就是直線方程、圓的方程、圓錐曲線方程及其簡單幾何性質(zhì),復習解析幾何時不能把目標僅僅定位在知識的掌握上,要在解題方法、解題思想上深入下去解析幾何中基本的解題方法是使用代數(shù)方程的方法研究直線、曲線的某些幾何性質(zhì),代數(shù)方程是解題的橋梁,要掌握一些解方程(組)的方法,掌握一元二次方程的知識在解析幾何中的應(yīng)用,掌握使用韋達定理進行整體代入的解題方法;數(shù)學思想方法在解析幾何問題中起著重要作用,數(shù)形結(jié)合思想占首位,其次分類討論思想、函數(shù)與方程思想、化歸與轉(zhuǎn)化思想,如解析幾何中的最值問題往往就是建立求解目標的函數(shù),通過函數(shù)的最值研究幾何中的最值復習解析幾何時要充分重視數(shù)學思想方法的運用二、知識導學(一)直線的

4、方程1.點斜式:;2. 截距式:; 3.兩點式:;4. 截距式:;5.一般式:,其中A、B不同時為0.(二)兩條直線的位置關(guān)系兩條直線,有三種位置關(guān)系:平行(沒有公共點);相交(有且只有一個公共點);重合(有無數(shù)個公共點).在這三種位置關(guān)系中,我們重點研究平行與相交.設(shè)直線:=+,直線:=+,則的充要條件是=,且=;的充要條件是=-1. (三)圓的有關(guān)問題1.圓的標準方程(r0),稱為圓的標準方程,其圓心坐標為(a,b),半徑為r.特別地,當圓心在原點(0,0),半徑為r時,圓的方程為.2.圓的一般方程(0)稱為圓的一般方程,其圓心坐標為(,),半徑為.當=0時,方程表示一個點(,);當0時,

5、方程不表示任何圖形. 3.圓的參數(shù)方程 圓的普通方程與參數(shù)方程之間有如下關(guān)系: (為參數(shù)) (為參數(shù))(四) 橢圓及其標準方程1. 橢圓的定義:橢圓的定義中,平面內(nèi)動點與兩定點、的距離的和大于|這個條件不可忽視.若這個距離之和小于|,則這樣的點不存在;若距離之和等于|,則動點的軌跡是線段.2.橢圓的標準方程:(0),(0).3.橢圓的標準方程判別方法:判別焦點在哪個軸只要看分母的大?。喝绻椀姆帜复笥陧椀姆帜福瑒t橢圓的焦點在x軸上,反之,焦點在y軸上.4.求橢圓的標準方程的方法: 正確判斷焦點的位置; 設(shè)出標準方程后,運用待定系數(shù)法求解.(五)橢圓的簡單幾何性質(zhì)1. 橢圓的幾何性質(zhì):設(shè)橢圓方程

6、為(0). 范圍: -axa,-bxb,所以橢圓位于直線x=和y=所圍成的矩形里. 對稱性:分別關(guān)于x軸、y軸成軸對稱,關(guān)于原點中心對稱.橢圓的對稱中心叫做橢圓的中心. 頂點:有四個(-a,0)、(a,0)(0,-b)、(0,b). 線段、分別叫做橢圓的長軸和短軸.它們的長分別等于2a和2b,a和b分別叫做橢圓的長半軸長和短半軸長. 所以橢圓和它的對稱軸有四個交點,稱為橢圓的頂點. 離心率:橢圓的焦距與長軸長的比叫做橢圓的離心率.它的值表示橢圓的扁平程度.0e1.e越接近于1時,橢圓越扁;反之,e越接近于0時,橢圓就越接近于圓.橢圓的四個主要元素a、b、c、e中有=+、兩個關(guān)系,因此確定橢圓的

7、標準方程只需兩個獨立條件.(六)橢圓的參數(shù)方程 橢圓(0)的參數(shù)方程為(為參數(shù)). 說明 這里參數(shù)叫做橢圓的離心角.橢圓上點P的離心角與直線OP的傾斜角不同:; 橢圓的參數(shù)方程可以由方程與三角恒等式相比較而得到,所以橢圓的參數(shù)方程的實質(zhì)是三角代換.(七)雙曲線及其標準方程1. 雙曲線的定義:平面內(nèi)與兩個定點、的距離的差的絕對值等于常數(shù)2a(小于|)的動點的軌跡叫做雙曲線.在這個定義中,要注意條件2a|,這一條件可以用“三角形的兩邊之差小于第三邊”加以理解.若2a=|,則動點的軌跡是兩條射線;若2a|,則無軌跡. 若時,動點的軌跡僅為雙曲線的一個分支,又若時,軌跡為雙曲線的另一支.而雙曲線是由兩

8、個分支組成的,故在定義中應(yīng)為“差的絕對值”.2. 雙曲線的標準方程:和(a0,b0).這里,其中|=2c.要注意這里的a、b、c及它們之間的關(guān)系與橢圓中的異同.1的常數(shù)(離心率)的點的軌跡叫做雙曲線.對于雙曲線,它的焦點坐標是(-c,0)和(c,0),與它們對應(yīng)的準線方程分別是和.在雙曲線中,a、b、c、e四個元素間有與的關(guān)系,與橢圓一樣確定雙曲線的標準方程只要兩個獨立的條件.(九)拋物線的標準方程和幾何性質(zhì)1拋物線的定義:平面內(nèi)到一定點(F)和一條定直線(l)的距離相等的點的軌跡叫拋物線。這個定點F叫拋物線的焦點,這條定直線l叫拋物線的準線。需強調(diào)的是,點F不在直線l上,否則軌跡是過點F且與

9、l垂直的直線,而不是拋物線。2拋物線的方程有四種類型:、.對于以上四種方程:應(yīng)注意掌握它們的規(guī)律:曲線的對稱軸是哪個軸,方程中的該項即為一次項;一次項前面是正號則曲線的開口方向向x軸或y軸的正方向;一次項前面是負號則曲線的開口方向向x軸或y軸的負方向。3拋物線的幾何性質(zhì),以標準方程y2=2px為例(1)范圍:x0;(2)對稱軸:對稱軸為y=0,由方程和圖像均可以看出;(3)頂點:O(0,0),注:拋物線亦叫無心圓錐曲線(因為無中心);(4)離心率:e=1,由于e是常數(shù),所以拋物線的形狀變化是由方程中的p決定的;(5)準線方程;(6)焦半徑公式:拋物線上一點P(x1,y1),F(xiàn)為拋物線的焦點,對

10、于四種拋物線的的點.那么,這個方程叫做曲線的方程;這條曲線叫做方程的曲線(圖形或軌跡).注意事項 1 直線的斜率是一個非常重要的概念,斜率k反映了直線相對于x軸的傾斜程度.當斜率k存在時,直線方程通常用點斜式或斜截式表示,當斜率不存在時,直線方程為x=a(aR).因此,利用直線的點斜式或斜截式方程解題時,斜率k存在與否,要分別考慮. 直線的截距式是兩點式的特例,a、b分別是直線在x軸、y軸上的截距,因為a0,b0,所以當直線平行于x軸、平行于y軸或直線經(jīng)過原點,不能用截距式求出它的方程,而應(yīng)選擇其它形式求解.求解直線方程的最后結(jié)果,如無特別強調(diào),都應(yīng)寫成一般式.當直線或的斜率不存在時,可以通過

11、畫圖容易判定兩條直線是否平行與垂直在處理有關(guān)圓的問題,除了合理選擇圓的方程,還要注意圓的對稱性等幾何性質(zhì)的運用,這樣可以簡化計算.2. 用待定系數(shù)法求橢圓的標準方程時,要分清焦點在x軸上還是y軸上,還是兩種都存在. 注意橢圓定義、性質(zhì)的運用,熟練地進行a、b、c、e間的互求,并能根據(jù)所給的方程畫出橢圓.求雙曲線的標準方程 應(yīng)注意兩個問題: 正確判斷焦點的位置; 設(shè)出標準方程后,運用待定系數(shù)法求解.雙曲線的漸近線方程為或表示為.若已知雙曲線的漸近線方程是,即,那么雙曲線的方程具有以下形式:,其中k是一個不為零的常數(shù).雙曲線的標準方程有兩個和(a0,b0).這里,其中|=2c.要注意這里的a、b、

12、c及它們之間的關(guān)系與橢圓中的異同.求拋物線的標準方程,要線根據(jù)題設(shè)判斷拋物線的標準方程的類型,再求拋物線的標準方程,要線根據(jù)題設(shè)判斷拋物線的標準方程的類型,再由條件確定參數(shù)p的值.同時,應(yīng)明確拋物線的標準方程、焦點坐標、準線方程三者相依并存,知道其中拋物線的標準方程、焦點坐標、準線方程三者相依并存,知道其中一個,就可以求出其他兩個.解題的策略有:1、注意直線傾斜角范圍 、設(shè)直線方程時注意斜率是否存在,可以設(shè)成 ,包含斜率不存在情況,但不包含斜率為0情況。注意截距為0的情況;注意點關(guān)于直線對稱問題(光線的反射問題);注意證明曲線過定點方法(兩種方法:特殊化、分離變量)2、注意二元二次方程表示圓的

13、充要條件、善于利用切割線定理、相交弦定理、垂徑定理等平面中圓的有關(guān)定理解題;注意將圓上動點到定點、定直線的距離的最值轉(zhuǎn)化為圓心到它們的距離;注意圓的內(nèi)接四邊形的一些性質(zhì)以及正弦定理、余弦定理。以過某點的線段為弦的面積最小的圓是以線段為直徑,而面積最大時,是以該點為線段中點。3、注意圓與橢圓、三角、向量(注意利用加減法轉(zhuǎn)化、利用模與夾角轉(zhuǎn)化、然后考慮坐標化)結(jié)合;4、注意構(gòu)建平面上的三點模型求最值,一般涉及“和”的問題有最小值,“差”的問題有最大值,只有當三點共線時才取得最值;5、熟練掌握求橢圓方程、雙曲線方程、拋物線方程的方法:待定系數(shù)法或定義法,注意焦點位置的討論,注意雙曲線的漸近線方程:焦

14、點在軸上時為 ,焦點在 軸上時為 ;注意化拋物線方程為標準形式(即2p、p、的關(guān)系);注意利用比例思想,減少變量,不知道焦點位置時,可設(shè)橢圓方程為 。6、熟練利用圓錐曲線的第一、第二定義解題;熟練掌握求離心率的題型與方法,特別提醒在求圓錐曲線方程或離心率的問題時注意利用比例思想方法,減少變量。7、注意圓錐曲線中的最值等范圍問題:產(chǎn)生不等式的條件一般有:“ 法”;離心率 的范圍;自變量 的范圍;曲線上的點到頂點、焦點、準線的范圍;注意尋找兩個變量的關(guān)系式,用一個變量表示另一個變量,化為單個變量,建立關(guān)于參數(shù)的目標函數(shù),轉(zhuǎn)化為函數(shù)的值域當題目的條件和結(jié)論能明顯體現(xiàn)幾何特征及意義,可考慮利用數(shù)形結(jié)合

15、法, 注意點是要考慮曲線上點坐標(x,y)的取值范圍、離心率范圍以及根的判別式范圍。8、求軌跡方程的常見方法:直接法;幾何法;定義法;相關(guān)點法; 9、注意利用向量方法, 注意垂直、平行、中點等條件以向量形式給出;注意將有關(guān)向量的表達式合理變形;特別注意遇到角的問題,可以考慮利用向量數(shù)量積解決;10、注意存在性、探索性問題的研究,注意從特殊到一般的方法。三、易錯點點睛命題角度1對橢圓相關(guān)知識的考查 1設(shè)橢圓的兩個焦點分別為F1、F2,過F2作橢圓長軸的垂線交橢圓于點P,若FlPF2為等腰直角三角形,則橢圓的離心率是 ( ) 考場錯解 A 專家把脈 沒有很好地理解橢圓的定義,錯誤地把當作離心率 對

16、癥下藥 D 設(shè)橢圓的方程為=l (a,b >0) 由題意可設(shè)|PF2|=|F1F2|=k,|PF1|=k,則e=2設(shè)雙曲線以橢圓=1長軸的兩個端點為焦點,其準線過橢圓的焦點,則雙曲線的漸近線的斜率為 ( ) A±2 B± C± D± 考場錯解 D 由題意得a=5,b=3,則c=4而雙曲線以橢圓=1長軸的兩個端點為焦點,則a=c =4,b=3 k= 專家把脈 沒有很好理解a、b、c的實際意義 對癥下藥 C 設(shè)雙曲線方程為=1,則由題意知c=5,=4 則a2=20 b2=5,而a=2 b=雙曲線漸近線斜率為±=3從集合1,2,3,11中任選兩

17、個元素作為橢圓方程=1中的m和n,則能組成落在矩形區(qū)域B=(x,y)x|<11,且|y|<9內(nèi)的橢圓個數(shù)為 ( ) A43 B72 C86 D90 考場錯解 D 由題意得,m、n都有10種可能,但mn故橢圓的個數(shù)10×10-10=90 專家把脈 沒有注意,x、y的取值不同 對癥下藥 B 由題意得m有10種可能,n只能從集合11,2,3,4,5,6,7,81中選取,且mn,故橢圓的個數(shù):10×8-8=724設(shè)直線l與橢圓=1相交于A、B兩點,l又與雙曲線x2-y2=1相交于C、D兩點,C、D三等分線段AB,求直線l的方程 ( ) 考場錯解 設(shè)直線l的方程為y=kx

18、+b如圖所示,l與橢圓,雙曲線的交點為A(x1,y1)、B (x2,y2)、C(x3,y3)、D(x4,y4),依題意有=3 由所以x1+x2=-由得(1-k2)x2-2bkx-(b2+1)=0 (2) 若k=±1,則l與雙曲線最多只有一個交點,不合題意,故k±1 所以x3+x4=、由x3-x1=x2-x4 x1+x2=x3+x4-bk=0或b =0 當k=0時,由(1)得x1、2=± 由(2)得x3、4=±由=3(x4-x1)即故l的方程為y=± 當b=0時,由(1)得x1、2=±,由(2)得x3、4=由=3(x4-x3)即綜上所述

19、:直線l的方程為:y= 專家把脈 用斜截式設(shè)直線方程時沒有注意斜率是否存在,致使造成思維片面,漏解 對癥下藥 解法一:首先討論l不與x軸垂直時的,情況設(shè)直線l的方程為y=kx+b,如圖所示,l與橢圓、雙曲線的交點為:A(x1,y1)、B(x2, y2)、C(x3,y3)、D(x4,y4),依題意有由得(16+25k2)x2+50bkx+(25b2-400)=0(1) 所以x1+x2=-由得(1-k2+x2-2bkx-(b2+1)=0若k=±1,則l與雙曲線最多只有一個交點,不合題意,故k±1所以x3+x4=由x1+x2=x2+x4或 b=0當k=0時,由(1)得由(2)得x

20、3、4=±由(x4-x3)即故l的方程為 y=±當b=0時,由(1)得x1、2=自(2)得x3、4=(x4-x3)即故l的方程為y=再討論l與x軸垂直時的情況設(shè)直線l的方程為x=c,分別代入橢圓和雙曲線方程可解得yl、2=y3、4=即綜上所述,直線l的方程是:y=x、y=±和x=x3、4=x2-x1=3(x4-x3)故l的方程為y=±當y0=0,x00,由(2)得x4=x30,這時l平行y軸設(shè)l的方程為x=c,分別代入橢圓、雙曲線方程得:yl、2=y3、4=y2-y1=3(y4-y3)故l的方程為:當x0=0,y0=0時,這時l通過坐標原點且不與x軸垂直

21、設(shè)l的方程為y=kx,分別代入橢圓、雙曲線方程得:x1、2=故l的方程為y=綜上所述,直線l的方程是:y=、y=和x=5設(shè)A、B是橢圓3x2+y2=上的兩點,點N(1,3)是線段AB的中點,線段AB的垂直平分線與橢圓相交于C、D兩點 (1)確定A的取值范圍,并求直線AB的方程; ()試判斷是否存在這樣的A,使得A、B、C、D四點在同一個圓上?并說明理由(此題不要求在答題卡上畫圖)考場錯解 (1)設(shè)A(x1,y1)B(x2,y2)則有:(x1-x2)(x1+x2)+(yl-y2)(yl+y2)=0依題意,x1x2 kAB-N(1,3)是AB的中點,x1+x2=2,yl+y2=6從而kAB=-9又

22、由N(1,3)在橢圓內(nèi),<3×12+32=12 的取值范圍是(-,12)直線AB的方程為y-3=-9(x-1)即9x+y-12=0專家把脈 用“差比法”求斜率時kAB=這地方很容易出錯N(1,3)在橢圓內(nèi),>3×12+32=12應(yīng)用結(jié)論時也易混淆對癥下藥 (1)解法1:依題意,可設(shè)直線AB的方程為y=A(x-1)+3,代入3x2+y2=,整理得(k2+3)x2-2k(k-3)x+(k-3)2-=0 設(shè)A(x1,y1)、B(x2、y2),則x1,x2是方程的兩個不同的根,=4(k2+3)-3(k-3)2>0, 且x1+x2=,由N(1,3)是線段AB的中點,

23、得,A(k-3)=k2+3解得k=-1,代入得,>12,即的取值范圍是(12,+)于是,直線AB的方程為y-3=-(x-1),即x+y-4=0 解法2:設(shè)A(x1,y1)、B(x2,y2),則有(x1-x2)(x1+x2)+(y1-y2)(y1+y2)=0 依題意,x1x2,kAB=-N(1,3)是AB的中點,x1+x2=2,yl+y2=6,從而kAB=-1又由N(1,3)在橢圓內(nèi),>3×12+32=12, 的取值范圍是(12,)直線AB的方程為y-3=-(x-1),即x+y-4=0 ()解法1:CD垂直平分AB,直線CD的方程為y-3 =x-1,即x-y+2=0,代入橢

24、圓方程,整理得4x2+4x+4又設(shè)C(x3,y3),D(x4,y4),CD的中點為M(x0,y0),則x3, x4是方程的兩根,x3+x4=-1,且x0=(x3+x4)=-,y0=x0+2=,即M(-,)于是由弦長公式可得|CD|=將直線AB的方程x+y-4=0,代入橢圓方程得4x2-8x+ 16-=0 同理可得|AB|= 當>12時,>,|AB|<|CD|假設(shè)存在>12,使得A、B、C、D四點共圓,則CD必為圓的直徑,點M為圓心點M到直線AB的距離為d=于是,由、式和勾股定理可得 |MA|2=|MB|2=d2+故當>12時,A、B、C、D四點均在以M為圓心,為半

25、徑的圓上 (注:上述解法中最后一步可按如下解法獲得:) A、B、C、D共圓ACD為直角三角形,A為直角|AN|2 =|CN|·|DN|,即. 由式知,式左邊=,由和知,式右邊=式成立,即A、B、C、D四點共圓解法2:由()解法1及>12, CD垂直平分AB,直線CD方程為y-3=x-1,代入橢圓方程,整理得4x2+4x+4-=0將直線AB的方程x+y-4=0,代入橢圓方程,整理得4x2-8x+16-=0解和式可得 xl,2=不妨設(shè)A(1+計算可得,A在以CD為直徑的圓上又B為A關(guān)于CD的對稱點,A、B、C、D四點共圓 (注:也可用勾股定理證明ACAD)專家會診 1重點掌握橢圓的

26、定義和性質(zhì),加強直線與橢圓位置關(guān)系問題的研究2.注重思維的全面性,例如求橢圓方程時只考慮到焦點在,軸上的情形;研究直線與橢圓位置關(guān)系時忽略了斜率不存在的情形3注重思想方法的訓練,在分析直線與橢圓位置關(guān)系時要利用數(shù)形結(jié)合和設(shè)而不求法與弦長公式韋達定理聯(lián)系去解決;關(guān)于參數(shù)范圍問題常用思路有:判別式法,自身范圍法等求橢圓的方程常用方法有:定義法,直接法,待定系數(shù)法,相關(guān)點法,參數(shù)法等命題角度2對雙曲線相關(guān)知識的考查1已知雙曲線x2-=1的焦點為F1、F2,點M在雙曲線上且,則點M到x軸的距離為 ( ) 考場錯解 B專家把脈 沒有理解M到x軸的距離的意義對癥下藥 C 由題意得a=1,b=,c=可設(shè)M

27、(x0,y0)|MF1|=|ex0+a|=|x0+1|,|MF2|= |ex0-a|=|x0-1| 由|MF1|2+|MF2|2=|F1F2|2得 x02=即點M到x軸的距離為2已知雙曲線=1(a>0,b>0)的右焦點為F,右準線與一條漸近線交于點A,OAF的面積為(O為原點),則兩條漸近線的夾角為 ( ) A30° B45° C60° D90° 考場錯解 B 專家把脈 把兩條漸近線的夾角看成漸近線的傾斜角 對癥下藥 D 由題意得A()sOAF=·c·,則兩條漸近線為了y=x與y=-x則求兩條漸近線的夾角為90°

28、解不等式,得專家會診 1注意雙曲線兩個定義的理解及應(yīng)用,在第二定義中,要強調(diào)e>1,必須明確焦點與準線的對應(yīng)性 2由給定條件求出雙曲線的方程,常用待定系數(shù)法,當焦點位置不確定時,方程可能有兩種形式,應(yīng)防止遺漏 3掌握參數(shù)a、b、c、e的關(guān)系,漸近線及其幾何意義,并注意靈活運用命題角度3對拋物線相關(guān)知識的考查。 1過拋物線y2=4x的焦點作一條直線與拋物線相交于A、B兩點,它們的橫坐標之和等于5,則這樣的直線 ( ) A.有且僅只有一條 B有且僅有兩條 C.有無窮多條 D不存在 考場錯解 D 由題意得|AB|=5 p=4,通徑長為 2×4=8 5<8,故不存在這樣的直線 專

29、家把脈 沒有理解拋物線焦點的弦長及p的意義 對癥下藥 B 解法一:由題意得P=2,通徑長為4,而|AB|=x1+x2+p=7,由7>4,則這樣的直線有且僅有兩條,解法二:用待定系數(shù)法設(shè)直線方程為y=k(x-1)采用設(shè)而不求的方法求出k有兩個值,即直線有且僅有兩條 2設(shè)A(x1,y1),B(x2,y2)兩點在拋物線y=2x2上,l是AB的垂直平分線 (1)當且僅當x1+x2取何值時,直線l經(jīng)過拋物線的焦點F?證明你的結(jié)論; ()當直線l的斜率為2時,求l在y軸上截距的取值范圍 考場錯解 (),設(shè)l在y軸上的截距為b,依題意得l的方程為y=2x+b,過點A、B的直線方程可寫為y=與y=2x2

30、聯(lián)立得2x2+x-m=0得x1+ x2=-;設(shè)AB的中點N的坐標為(x0,y0)則x0=(x1+x2)=-,y0=-x0+m=+m由Nl,得+m=-+b,于是b=即得l在y軸上截距的取值范圍為. 專家把脈 沒有借助“>0”來求出m>,無法進一步求出b的范圍,只好胡亂地把m當作大于或等于0 對癥下藥 (1)Fl|FA|=|FB|A、B兩點到拋物線的準線的距離相等 拋物線的準線是x軸的平行線,y10,y20,依題意 y1、y2不同時為0, 上述條件等價于yl=y2x12 =x22 (x1+x2)(x1-x2)=0; x1x2,上述條件等價于 x1+x2=0 即當且僅當x1+x2=0時,

31、l經(jīng)過拋物線的焦點F。 ()設(shè)l在y軸上的截距為b,依題意得l的方程為y=2x+b過點A、B的直線方程可寫為y=-x+m,所以x1、x2滿足方程2x2+x-m=0,得x1+x2=-; A、B為拋物線上不同的兩點等價于上述方程的判別式+8m>0,即m>設(shè)AB的中點N的坐標為(x0,y0),則x0=(x1+x2)=-,y0=-x0+m=+m 由Nl,得+m=-+b,于是b=+m> 即得l在y軸上截距的取值范圍為(,+)3如圖,過拋物線y2=2px(p>0)上一定點p(x0,y0)(y0>0),作兩條直線分別交拋物線于A (x1,y1),B(x2,y2)(1)求該拋物線

32、上縱坐標為的點到其焦點F的距離; ()當PA與PB的斜率存在且傾斜角互補時,求的值,并證明直線AB的斜率是非零常數(shù) 考場錯解 (1)當y=時,x=又拋物線的準線方程為x=-P,由拋物線定義得,所求距離為()設(shè)直線PA的斜率為kPA,直線PB的斜率為kPB由y21=2px1,y20=2px0相減得(yl-y0)(y1+y0)=2P(x1-x0) 故kPA= (x1x0)同理可得kpB=(x2x0)由kPA=-kPB得y0=-2 (yl+y2)故設(shè)直線AB的斜率為kAB。由y22=2px2,y21=2px1 相減得 (y2-y1)(y2+y1)=2P(x2-x1)故kAB=將y1+y2=-y0(y

33、0>0)代入得kAB=-故kAB是非零常數(shù) 專家把脈 沒有掌握拋物線的準線方程,計算不夠準確 對癥下藥 (1)當y=時,x=,又拋物線y2= 2px的準線方程為x=,由拋物線定義得,所求距離為-(-)=()設(shè)直線PA的斜率為kPA,直線PB的斜率為kPB由y12=2px1,y20=2px0相減得(y1-y0)(yl+y0)=2P(x1-x0),故kPA=(x1x0)同理可得kPB=(x2x0)由PA、PB傾斜角互補知kPA=-kPB,即=-,所以yl+y2=-2y0,故=-2. 設(shè)直線AB的斜率為kAB由y22=2px2,y21=2pxl相減得(y2-y1)(y2+y1)=2p(x2-x

34、1),所以將yl+y2=-2y0(y0>0)代入得所以kAB是非零常數(shù) 4在平面直角坐標系xOy中,拋物線y=x2上異于坐標原點O的兩不同動點A、B滿足AOBO(如圖所示) (1)求AOB的重心C(即三角形三條中線的交點)的軌跡方程; ()AOB的面積是否存在最小值?若存在,請求出最小值;若不存在,請說明理由 考場錯解()設(shè)AOB的重心為G(x,y)A(x1,y1)B(x2,y2)則OAx1x2+yly2=0(2)又點A、B在拋物線上,有y1=x12,y2=x22代入(2)化簡得xlx2=0或-1y=(x1+x2)2-2x1x2=3x2+或3x2,故重心為G的軌跡方程為y=3x2或y=3

35、x2+.專家把脈沒有考慮到x1x2=0時,AOB不存在對癥下藥 ()設(shè)AOB的重心為G(x,y)A(x1,y1)B(x2,y2)則又點A、B在拋物線上,有y1=x12,y2=x22代入(2)化簡得xlx2=-1y=(x1+x2)2-2x1x2=3x2+所以重心為G的軌跡方程為y=3x2+ ()SAOB=由(1)得SAOB=當且僅當x16=x26即x1=-x2=-1時,等號成立。所以AOB的面積存在最小值,最小值為1。專家會診用待定系數(shù)法求拋物線標準方程,注意分類討論思想。凡涉及拋物線的弦長,弦的中點,弦的斜率問題時要注意利用韋達定理,能避免求交點坐標的復雜運算。解決焦點弦問題時,拋物線的定義有

36、廣泛的應(yīng)用,而且還應(yīng)注意焦點弦的幾何性質(zhì)。(x1,yl-1)=(x2,y2-1)由此得x1=x2,由于x1, x2都是方程的根,且1-a20,所以消去x2得 專家把脈 (1)沒有考慮到1-a20()沒有注意到題目本身的條件a>0 對癥下藥 (1)由C與l相交于兩個不同的點,故知方程組有兩個不同的實數(shù)解,消去y并整理得(1-a2)x2+2a2x +2a2x-2a2=0所以解得0<a<且 a1雙曲線的率心率e=且 a1,e>且e,即離心率e的取值范圍為()() ()設(shè)A(x1,y1),B(x2,y2),P(0,1)(x1,y1-1)=(x2,y2-1)由此得x1=x2,由于

37、x1,x2都是方程的根,且1-a20,所以x2=-,消x2,得-,由a>0,所以a=2給定拋物線C:y2=4x,F(xiàn)是C的焦點,過點F的直線l與C相交于A、B兩點 (1)設(shè)l的斜率為1,求與夾角的大?。?()設(shè),若4,9,求l在y軸上截距的變化范圍 考場錯解 (1)設(shè)與夾角為;由題意l的方程為了y=x-1,將y=x-1代入y2=4x得x2-6x+1=0設(shè)A(x1,y1)B(x2,y2)則有x1+x2=6,x1x2=1易得·=x1x2+y1y2=-3,cos=-arccos()由題意知,過A、B分別作準線的垂線,垂足分別為A'、B' |FB|=|BB'|,|

38、AF|=|AA'| |BB|=|AA'|,4, 9設(shè)l的方程為y=k(x-1)由得k2x2-(2k2 +4)x+k2=0 x=|AA'|=+l =|BB'|= 專家把脈 ()沒有理解反余弦的意義()思路不清晰對癥下藥 (1)C的焦點為F(1,0),直線l的斜率為1,所以l的方程為了y=x-1將y=x-1代入方程y2=4x,并整理得x2-6x+1=0設(shè)A(x1,y1),B(x2,y2),則有xl+x2=6,x1x2=1 =(x1,y1)·(x2,y2)=x1x2+yly2=2x1x2-(x1 +x2)+1=-3 所以與夾角的大小為-arc cos()由題

39、設(shè)得 (x2-1,y2)=(1-x1,-y1),即由得y22=2y21y21=4x1,y22=4x2,x2=2x1 聯(lián)立、解得x2=,依題意有>0,B(,2 )或B (,-2 ),又9(1,0),得直線(2)當|PF1|=|F1F2|時,同理可得解得e2=3于是=1-3=-2 (3)當|PF2|=|F1F2|時,同理可得=4c2 解得e2=1 于是=1-1=0綜上所述,當=或-2或0時PF1F2,F(xiàn)2為等腰三角形 專家把脈 (1)沒有注意到因為PF1l,所以PF1F2=90°+BAF1為鈍角,要使PF1F2為等腰三角形,必有|PF1|=|F1F2| (2)沒有注意到橢圓離心率的

40、范圍 對癥下藥 (1)證法一:因為A、B分別是直線l:y= ex+a與x軸、y軸的交點,所以A、B的坐標分別是(-)(0,a). 由所以點M的坐標是(-c,),由得(-c+)=(,a) 即 證法二:因為A、B分別是直線l:y=ex+a與x軸、y軸的交點,所以A、B的坐標分別是(-,0),(0,a),設(shè)M的坐標是(x0,y0),由得(), 所以因為點M在橢圓上,所以=1, 即e4-2(1-)e2+(1-)2=0,解得e2=1- 即=1-e2 ()解法一:因為PF1l,所以 PF1F2=90°+BAF1為鈍角,要使PF1F2為等腰三角形,必有|PF1|=|F1F2|,即|PF1|=c.

41、設(shè)點F1到l的距離為d,由|PF1|=d, =,得=e所以e2=,于是=1-e2=.即當=時,PF1F2為等腰三角形解法二:因為PF1l,所以,PF1F2=90°+BAF1為鈍角,要使PF1F2為等腰三角形,必有|PF1|=|F1F2|,設(shè)點P的坐標是(x0,y0),則解得由|PF1|=|FlF2|得=4c2,兩邊同時除以4a2,化簡得=e2從而e2=于是=l-e2=即當=時,PF1F2為等腰三角形 4拋物線C的方程為y=ax2(a<0),過拋物線C上一點P(x0,y0)(x00)作斜率為k1,k2的兩條直線分別交拋物線C于A(x1,y1)B(x2,y2)兩點(P、A、B三點互

42、不相同),且滿足k2+k1=0(0且-1) ()求拋物線C的焦點坐標和準線方程; ()設(shè)直線AB上一點M滿足=,證明線段PM的中點在y軸上 ()當A=1時,若點P的坐標為(1,-1),求PAB為鈍角時點A的縱坐標y1的取值范圍 考場錯解 (1)拋物線C的方程y=ax2(a<0)得,焦點坐標為(,0)準線方程為x=-()P(-1,1)在y=ax2上,故a=-1y=-x2由()易得y1=-(k1+1)2,y2=(k2+1)2,因此,直線PA、PB分別與拋物線C的交點A、B的坐標為A(-k1 -1,-k21-2k1-1),B(k1-1,-k21+2k1-1)于是= (k1+2,k21+2k1)

43、,=(2k1,4k1),2k1(k1+2)(2k1+1)因PAB為鈍角且P、A、B三點互不相同,故必有·<0易得k1的取值范圍是 k1<-2或<kl<0,又yl=-(k1+1)2故當k1<-2時,y<-1;當-<k1<0時-1<yl<- 即y1 專家把脈 沒有掌握好拋物線的標準形式及交并集的概念 對癥下藥 (1)由拋物線C的方程y=ax2(a<0)得,焦點坐標為(0,),準線方程為y=- ()證明:設(shè)直線PA的方程為y-y0=k1(x-x0),直線 PB的方程為y-y0=k2(x-x0)點P(x0,y0)和·

44、點A(x1,y1)的坐標是方程組 的解將式代入式得ax2-k1x+klx0-y0=0,于是 x1+x0=,故x1=-x0又點P(x0,y0)和點B(x2,y2)的坐標是方程組的解將式代入式得ax2-k2x+k2x0-y0=0于是x2+x0=,故x2=-x0, 由已知得,k2=-kl,則x2=設(shè)點M的坐標為(xM,yM),由=,則xM=.將式和式代入上式得x0,即xM+x0=0所以線段PM的中點在y軸上 ()因為點P(1,-1)在拋物線y=ax2上,所以a=-1,拋物線方程為y=-x2由式知x1=-k1-1,代入y=-x2得y1=-(k1+1)2將=1代入式得x2=k1-1,代入y=-x2得y2

45、=- (k2+1)2因此,直線PA、PB分別與拋物線C的交點A、B的坐標為 A(-k1,-1,-k21-2k1-1),B(k1-1,-k12+2k1-1)于是=(k1+2,k12+2k1),=(2K1,4K1),= 2k1(k1+2)+4kl(k12+2k1)=2k1(k1+2)(2k1+1)因PAB為鈍角且P、A、B三點互不相同,故必有<0求得k1的取值范圍是k1<-2或-<k1<0又點A的縱坐標y1滿足y1=-(k1+1)2,故當k1<-2時, y1<-1;當-<k1<0時,-1<y1<-.即y1(-,-1)U(-1,-)專家會診

46、 1判定直線與圓錐曲線交點個數(shù)的基本方法是聯(lián)立方程組,判斷方程組解的組數(shù),對于直線與雙曲線的交點個數(shù)問題還可借助直線與漸近線斜率的關(guān)系來判斷,而直線與拋物線的位置關(guān)系則可借助直線與拋物線對稱軸的位置關(guān)系來判定,不可混淆2涉及弦長的問題中,應(yīng)熟練地利用韋達定理,設(shè)而不求計算弦長,不要蠻算,以免出現(xiàn)差錯3涉及弦長的中點問題,常用“差分法”設(shè)而不求,將弦所在直線的斜率,弦的中點坐標聯(lián)系起來,相互轉(zhuǎn)化。命題角度5對軌跡問題的考查 1(典型例題)已知雙曲線的中心在原點,離心率為若它的一條準線與拋物線y2=4x的準線重合,則該雙曲線與拋物線y2=4x的交點到原點的距離是 ( ) A.2 B C18+12

47、D21考場錯解 C 專家把脈 對雙曲線的定義理解不夠深刻 對癥下藥 B 設(shè)雙曲線方程為=1,由題意得則a=b=,則雙曲線方程為=1,由得A(3,2),故交點到原點的距離為2(典型例題)已知點A(-2,0)、B(3,0),動點P(x,y)滿足=x2,則點P的軌跡是 ()直線l1:kx-y=0 直線l2:kx+y=0由題意得 ·=d2即=d2 k2x2-y2±(k2+1)d2=0故動點P的軌跡C的方程為k2x2-y2±(k2+1)d2=0 ()略 專家把脈 沒有很好地理解題意,第二問出現(xiàn)兩解,致使第三問過于復雜難以完成對癥下藥 解:(I)W1=(x,y)|kx<

48、y-kx,z< 0|,W2=(x,y)|kx<y<bc,x>0,()直線l1:kx-y=0 直線l2:kx+y=0,由題意得·=d2,即=d2,由P(x,y)W,知k2x2-y2>0,所以=d2,即k2x2-y2-(k2+1)d2=0,所以動點P的軌跡C的方程為k2x2-y2-(k2+1)d2=0; ()當直線J與,軸垂直時,可設(shè)直線J的方程為,x=a (a0)由于直線l,曲線C關(guān)于x軸對稱,且l1與l2關(guān)于x軸對稱,于是M1M2,M3M4的中點坐標都為(a,0),所以O(shè)M1M2,OM3M4的重心坐標都為(a,0),即它們的重心重合,當直線l1與x軸不垂

49、直時,設(shè)直線J的方程為y=mx+n(n 0)由, 得(k2-m2)x2-2mnx-n2-k2d2-d2=0在QF1F2中故有x2+b2= a2(x=±a) ()C上存在M(x0,y0)使s=b2的充要條件是:又=(-C-x0-y0),=(c-x0,y0)由·=x02-c2+y20=a2-c2=b2即cosF1MF2=b2又s=sinFlMF2得tan FlMF2=2 專家把脈 (1)沒有注意證明題的書寫格式(2)思考問題不夠全面對癥下藥 (1)證法一:設(shè)點P的坐標為(x,y)由P(x,y)在橢圓上,得2由|x|a,知a+-c+a>0,所以=a+x新課 標第 一網(wǎng)證法二

50、:設(shè)點P的坐標為(x,y)記則r1=,r2=.由r1+r2=2a,r21-r22=4cx,得=r1=a+證法三:設(shè)點P的坐標為(x,y)橢圓的左準線方程a+=0由橢圓第二定義得即由x-a,知a+-c+a>0,所以=a+()解法一:設(shè)點T的坐標為(x,y)當=0時,點(a,0)和點(-a,0)在軌跡上當且時,由=0,得又,所以T為線段F2Q的中點在QF1F2中,=a,所以有x2+y2=a2綜上所述,點T的軌跡C的方程是x2+y2=a2解法二:設(shè)點T的坐標為(x,y)當|=0時,點(a,0)和點(-a,0)在軌跡上當且時,由又|=|,所以T為線段F2Q的中點設(shè)點Q的坐標為(x',y&

51、#39;),則因此由=2a得(x'+c)2+y'2=4a2將代入,可得x2+y2=a2綜上所述,點T的軌跡C的方程是x2+y2=a2 ()解法一:C上存在點M(x0,y0)使S=b2的充要條件是由得,|y0|a,由得,|y0|,所以,當a時,存在點M,使S=b2;當a<時,不存在滿足條件的點M當a時,=(-c-c0,-y0),=(c-c0,-y0),由·=x02-c2+y20=a2-c2=b2,解法二:C上存在點M(x0,y0)使S=b2的充要條件是由得|y0|,上式代入得x20=a2-=(a-) (a+)0于是,當a時,存在點M,使s=b2;當a<時,不

52、存在滿足條件的點M當a時,記k1=kF1M= 由|F1F2|<2a,知F1MF2<90°,所以tanF1MF2=2專家會診 (1)求軌跡方程的本質(zhì)是用代數(shù)形式將動點的運動規(guī)律表示出來,實質(zhì)上是一個翻譯過程,故選取一定解題策略找到動點運動規(guī)律的一些表現(xiàn)形式是關(guān)鍵,往往和研究曲線幾何性質(zhì),討論直線與曲線位置關(guān)系等聯(lián)系在一起(2)求軌跡要注意取值范圍和“雜點”的去除故舍去綜上所述:當x=時d取得最小值專家把脈 沒有考慮到橢圓的分面有界性,致使思路不清晰,計算繁瑣 對癥下藥 解(1)由已知可得點A(-6,0),F(xiàn)(0,4) 設(shè)點P(x,y),則=(x+6,y),=(x-4,y),

53、由已知可得 則 2x2+9x-18=0,x=或x=-6由于y>0,只能x=,于是y= 點P的坐標是()(2)直線AP的方程是x-+6=0設(shè)點M(m,0),則M到直線AP的距離是于是= |m-6|,又-6m6,解得m=2橢圓上的點(x,y)到點M的距離d有,d2=(x-2)2+y2 =x2-4x+4+20-x2 =(x-)2+15,由于-6m6,當x=時,d取得最小值2如圖,直線y=x嚴與拋物線y=x2-4交于A、B兩點,線段AB的垂直平分線與直線y=-5交于點Q (1)求點Q的坐標 (2)當P為拋物線上位于線段AB下方(含點A、B)的動點時,求OPQ面積的最大值 考場錯解 (1)略()由

54、(1)得Q(5,-5) 直線OQ的方程為x+y=0設(shè)P(x, -4)點P到直線OQ的距離d=-4x8 SOPQ最大值=|(-4+4)2-48|=15 專家把脈 要注意二次函數(shù)最大值的求法 對癥下藥 (1)解方程組,得即A(-4,-2),B(8,4),從而AB的中點為M(2,1),由,得線段AB的垂直平分線方程y-1=-2(x-2)令y=-5,得x=5,Q(5,-5)(2)直線OQ的方程為x+y=0,設(shè)P(x,-4),點P到直線OQ的距離d=P為拋物線上位于線段AB下方點,且P不在直線OQ上 -4x<4-4或4-4<x8SOPQ最大值=30 3設(shè)橢圓方程為x2+=1,過點M(0,1)

55、的直線l交橢圓于點A、B、O是坐標原點,點P滿足,點N的坐標為(,),當l繞點M旋轉(zhuǎn)時,求: ()動點戶的軌跡方程; ()的最小值與最大值 考場錯解 (1)若l的斜率存在,設(shè)為k,則l:y =kx+1代入4x2+y2=4中得,(k2+4)x2+2kx-3=0 x1+x2=i)A=0時,x=0 y=1,P(0,1) ii)k0時,k=P點的軌跡為:x2+y2-y=0(yO)若l不存在斜率,A、B為上、下頂點P(0,0) (2)解:N(),i),k不存在時P(0,0),ii) k=0時P(0,1) iii)k0時x2+(y-)2=。又N()max=2r=1 min=0 專家把脈 思路不清晰對癥下藥 (1)解法一:直線l過點M(0,1),設(shè)其斜率為A,則J的方程為y=kx+1記A(x1,y1)、B(x2,y2),由題設(shè)可得A、B的坐標(x1,y1)、(x2,y2)是方程組的解將代入并化簡得(4+k2)x2+2kx-3=0所以 于是設(shè)點P的坐

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
  • 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論