遺傳算法英文資料_第1頁
遺傳算法英文資料_第2頁
遺傳算法英文資料_第3頁
遺傳算法英文資料_第4頁
遺傳算法英文資料_第5頁
已閱讀5頁,還剩3頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權,請進行舉報或認領

文檔簡介

1、What is a genetic algorithm?l Methods of representation l Methods of selection l Methods of change l Other problem-solving techniques Concisely stated, a genetic algorithm (or GA for short) is a programming technique that mimics biological evolution as a problem-solving strategy. Given a specific pr

2、oblem to solve, the input to the GA is a set of potential solutions to that problem, encoded in some fashion, and a metric called a fitness function that allows each candidate to be quantitatively evaluated. These candidates may be solutions already known to work, with the aim of the GA being to imp

3、rove them, but more often they are generated at random.The GA then evaluates each candidate according to the fitness function. In a pool of randomly generated candidates, of course, most will not work at all, and these will be deleted. However, purely by chance, a few may hold promise - they may sho

4、w activity, even if only weak and imperfect activity, toward solving the problem.These promising candidates are kept and allowed to reproduce. Multiple copies are made of them, but the copies are not perfect; random changes are introduced during the copying process. These digital offspring then go o

5、n to the next generation, forming a new pool of candidate solutions, and are subjected to a second round of fitness evaluation. Those candidate solutions which were worsened, or made no better, by the changes to their code are again deleted; but again, purely by chance, the random variations introdu

6、ced into the population may have improved some individuals, making them into better, more complete or more efficient solutions to the problem at hand. Again these winning individuals are selected and copied over into the next generation with random changes, and the process repeats. The expectation i

7、s that the average fitness of the population will increase each round, and so by repeating this process for hundreds or thousands of rounds, very good solutions to the problem can be discovered.As astonishing and counterintuitive as it may seem to some, genetic algorithms have proven to be an enormo

8、usly powerful and successful problem-solving strategy, dramatically demonstrating the power of evolutionary principles. Genetic algorithms have been used in a wide variety of fields to evolve solutions to problems as difficult as or more difficult than those faced by human designers. Moreover, the s

9、olutions they come up with are often more efficient, more elegant, or more complex than anything comparable a human engineer would produce. In some cases, genetic algorithms have come up with solutions that baffle the programmers who wrote the algorithms in the first place!Methods of representationB

10、efore a genetic algorithm can be put to work on any problem, a method is needed to encode potential solutions to that problem in a form that a computer can process. One common approach is to encode solutions as binary strings: sequences of 1's and 0's, where the digit at each position repres

11、ents the value of some aspect of the solution. Another, similar approach is to encode solutions as arrays of integers or decimal numbers, with each position again representing some particular aspect of the solution. This approach allows for greater precision and complexity than the comparatively res

12、tricted method of using binary numbers only and often "is intuitively closer to the problem space" (Fleming and Purshouse 2002, p. 1228).This technique was used, for example, in the work of Steffen Schulze-Kremer, who wrote a genetic algorithm to predict the three-dimensional structure of

13、a protein based on the sequence of amino acids that go into it (Mitchell 1996, p. 62). Schulze-Kremer's GA used real-valued numbers to represent the so-called "torsion angles" between the peptide bonds that connect amino acids. (A protein is made up of a sequence of basic building bloc

14、ks called amino acids, which are joined together like the links in a chain. Once all the amino acids are linked, the protein folds up into a complex three-dimensional shape based on which amino acids attract each other and which ones repel each other. The shape of a protein determines its function.)

15、 Genetic algorithms for training neural networks often use this method of encoding also.A third approach is to represent individuals in a GA as strings of letters, where each letter again stands for a specific aspect of the solution. One example of this technique is Hiroaki Kitano's "gramma

16、tical encoding" approach, where a GA was put to the task of evolving a simple set of rules called a context-free grammar that was in turn used to generate neural networks for a variety of problems (Mitchell 1996, p. 74).The virtue of all three of these methods is that they make it easy to defin

17、e operators that cause the random changes in the selected candidates: flip a 0 to a 1 or vice versa, add or subtract from the value of a number by a randomly chosen amount, or change one letter to another. (See the section on Methods of change for more detail about the genetic operators.) Another st

18、rategy, developed principally by John Koza of Stanford University and called genetic programming, represents programs as branching data structures called trees (Koza et al. 2003, p. 35). In this approach, random changes can be brought about by changing the operator or altering the value at a given n

19、ode in the tree, or replacing one subtree with another. Figure 1: Three simple program trees of the kind normally used in genetic programming. The mathematical expression that each one represents is given underneath.It is important to note that evolutionary algorithms do not need to represent candid

20、ate solutions as data strings of fixed length. Some do represent them in this way, but others do not; for example, Kitano's grammatical encoding discussed above can be efficiently scaled to create large and complex neural networks, and Koza's genetic programming trees can grow arbitrarily la

21、rge as necessary to solve whatever problem they are applied to.Methods of selectionThere are many different techniques which a genetic algorithm can use to select the individuals to be copied over into the next generation, but listed below are some of the most common methods. Some of these methods a

22、re mutually exclusive, but others can be and often are used in combination.Elitist selection: The most fit members of each generation are guaranteed to be selected. (Most GAs do not use pure elitism, but instead use a modified form where the single best, or a few of the best, individuals from each g

23、eneration are copied into the next generation just in case nothing better turns up.)Fitness-proportionate selection: More fit individuals are more likely, but not certain, to be selected.Roulette-wheel selection: A form of fitness-proportionate selection in which the chance of an individual's be

24、ing selected is proportional to the amount by which its fitness is greater or less than its competitors' fitness. (Conceptually, this can be represented as a game of roulette - each individual gets a slice of the wheel, but more fit ones get larger slices than less fit ones. The wheel is then sp

25、un, and whichever individual "owns" the section on which it lands each time is chosen.)Scaling selection: As the average fitness of the population increases, the strength of the selective pressure also increases and the fitness function becomes more discriminating. This method can be helpf

26、ul in making the best selection later on when all individuals have relatively high fitness and only small differences in fitness distinguish one from another.Tournament selection: Subgroups of individuals are chosen from the larger population, and members of each subgroup compete against each other.

27、 Only one individual from each subgroup is chosen to reproduce.Rank selection: Each individual in the population is assigned a numerical rank based on fitness, and selection is based on this ranking rather than absolute differences in fitness. The advantage of this method is that it can prevent very

28、 fit individuals from gaining dominance early at the expense of less fit ones, which would reduce the population's genetic diversity and might hinder attempts to find an acceptable solution.Generational selection: The offspring of the individuals selected from each generation become the entire n

29、ext generation. No individuals are retained between generations.Steady-state selection: The offspring of the individuals selected from each generation go back into the pre-existing gene pool, replacing some of the less fit members of the previous generation. Some individuals are retained between gen

30、erations.Hierarchical selection: Individuals go through multiple rounds of selection each generation. Lower-level evaluations are faster and less discriminating, while those that survive to higher levels are evaluated more rigorously. The advantage of this method is that it reduces overall computati

31、on time by using faster, less selective evaluation to weed out the majority of individuals that show little or no promise, and only subjecting those who survive this initial test to more rigorous and more computationally expensive fitness evaluation.Methods of changeOnce selection has chosen fit ind

32、ividuals, they must be randomly altered in hopes of improving their fitness for the next generation. There are two basic strategies to accomplish this. The first and simplest is called mutation. Just as mutation in living things changes one gene to another, so mutation in a genetic algorithm causes

33、small alterations at single points in an individual's code.The second method is called crossover, and entails choosing two individuals to swap segments of their code, producing artificial "offspring" that are combinations of their parents. This process is intended to simulate the analo

34、gous process of recombination that occurs to chromosomes during sexual reproduction. Common forms of crossover include single-point crossover, in which a point of exchange is set at a random location in the two individuals' genomes, and one individual contributes all its code from before that po

35、int and the other contributes all its code from after that point to produce an offspring, and uniform crossover, in which the value at any given location in the offspring's genome is either the value of one parent's genome at that location or the value of the other parent's genome at tha

36、t location, chosen with 50/50 probability. Figure 2: Crossover and mutation. The above diagrams illustrate the effect of each of these genetic operators on individuals in a population of 8-bit strings. The upper diagram shows two individuals undergoing single-point crossover; the point of exchange i

37、s set between the fifth and sixth positions in the genome, producing a new individual that is a hybrid of its progenitors. The second diagram shows an individual undergoing mutation at position 4, changing the 0 at that position in its genome to a 1.Other problem-solving techniquesWith the rise of a

38、rtificial life computing and the development of heuristic methods, other computerized problem-solving techniques have emerged that are in some ways similar to genetic algorithms. This section explains some of these techniques, in what ways they resemble GAs and in what ways they differ.· Neural

39、 networksA neural network, or neural net for short, is a problem-solving method based on a computer model of how neurons are connected in the brain. A neural network consists of layers of processing units called nodes joined by directional links: one input layer, one output layer, and zero or more h

40、idden layers in between. An initial pattern of input is presented to the input layer of the neural network, and nodes that are stimulated then transmit a signal to the nodes of the next layer to which they are connected. If the sum of all the inputs entering one of these virtual neurons is higher th

41、an that neuron's so-called activation threshold, that neuron itself activates, and passes on its own signal to neurons in the next layer. The pattern of activation therefore spreads forward until it reaches the output layer and is there returned as a solution to the presented input. Just as in t

42、he nervous system of biological organisms, neural networks learn and fine-tune their performance over time via repeated rounds of adjusting their thresholds until the actual output matches the desired output for any given input. This process can be supervised by a human experimenter or may run autom

43、atically using a learning algorithm (Mitchell 1996, p. 52). Genetic algorithms have been used both to build and to train neural networks. Figure 3: A simple feedforward neural network, with one input layer consisting of four neurons, one hidden layer consisting of three neurons, and one output layer

44、 consisting of four neurons. The number on each neuron represents its activation threshold: it will only fire if it receives at least that many inputs. The diagram shows the neural network being presented with an input string and shows how activation spreads forward through the network to produce an

45、 output.· Hill-climbingSimilar to genetic algorithms, though more systematic and less random, a hill-climbing algorithm begins with one initial solution to the problem at hand, usually chosen at random. The string is then mutated, and if the mutation results in higher fitness for the new soluti

46、on than for the previous one, the new solution is kept; otherwise, the current solution is retained. The algorithm is then repeated until no mutation can be found that causes an increase in the current solution's fitness, and this solution is returned as the result (Koza et al. 2003, p. 59). (To

47、 understand where the name of this technique comes from, imagine that the space of all possible solutions to a given problem is represented as a three-dimensional contour landscape. A given set of coordinates on that landscape represents one particular solution. Those solutions that are better are h

48、igher in altitude, forming hills and peaks; those that are worse are lower in altitude, forming valleys. A "hill-climber" is then an algorithm that starts out at a given point on the landscape and moves inexorably uphill.) Hill-climbing is what is known as a greedy algorithm, meaning it al

49、ways makes the best choice available at each step in the hope that the overall best result can be achieved this way. By contrast, methods such as genetic algorithms and simulated annealing, discussed below, are not greedy; these methods sometimes make suboptimal choices in the hopes that they will lead to better solutions later on.· Simulated annealingAnother optimization technique similar to evolutionary algorithms is known as si

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經(jīng)權益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
  • 6. 下載文件中如有侵權或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論