微分幾何第二章曲面論第三節(jié)復(fù)習(xí)2_第1頁
微分幾何第二章曲面論第三節(jié)復(fù)習(xí)2_第2頁
微分幾何第二章曲面論第三節(jié)復(fù)習(xí)2_第3頁
微分幾何第二章曲面論第三節(jié)復(fù)習(xí)2_第4頁
微分幾何第二章曲面論第三節(jié)復(fù)習(xí)2_第5頁
已閱讀5頁,還剩46頁未讀 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報或認(rèn)領(lǐng)

文檔簡介

1、2022-7-43 曲面的第二基本形式1.1.曲面的第二基本形式;曲面的第二基本形式;2.2.曲面上曲線的曲率;曲面上曲線的曲率;3.3.Dupin指標(biāo)線;指標(biāo)線;4.4.曲面的漸近方向和共軛方向;曲面的漸近方向和共軛方向;5.5.曲面的主方向和曲率線;曲面的主方向和曲率線;6.6.曲面的主曲率、曲面的主曲率、Gauss曲率和平均曲率;曲率和平均曲率;7.7.曲面在一點(diǎn)鄰近的結(jié)構(gòu);曲面在一點(diǎn)鄰近的結(jié)構(gòu);8.8.Gauss曲率的幾何意義曲率的幾何意義.3.2 曲面上曲線的曲率曲面上曲線的曲率1.1.曲面上曲線的曲率曲面上曲線的曲率),(: )(vurrS P.)(C)(),(svsurr )()

2、,(svvsuu nr 222222cosGdvFdudvEduNdvMdudvLduIIIk 2.2.法截線、法曲率法截線、法曲率.PSdvdud:)( n法法截截面面)(0C法法截截線線0 ndvdud:)( .PS)(0C法法截截線線0 法法截截面面定義定義)(法法曲曲率率為為:的的法法曲曲率率曲曲面面在在給給定定點(diǎn)點(diǎn)沿沿一一方方向向nk 的的負(fù)負(fù)側(cè)側(cè)彎彎曲曲法法截截線線向向的的正正側(cè)側(cè)彎彎曲曲法法截截線線向向nknkkn00定理定理)(梅梅尼尼埃埃定定理理.)()()()(00的的密密切切平平面面上上的的投投影影曲曲線線在在的的曲曲率率中中心心上上同同一一點(diǎn)點(diǎn)具具有有共共同同切切線線的

3、的法法截截線線就就是是與與曲曲線線曲曲率率中中心心的的在在給給定定點(diǎn)點(diǎn)曲曲面面曲曲線線CCPCCCPCn)(d.PS)(0C法法截截線線法法截截面面)(C密密切切平平面面C0C coskkn 即即 cosnRR 梅梅尼尼埃埃定定理理R3.3 杜邦杜邦(Dupin)指標(biāo)線指標(biāo)線)(d.P,上上取取一一點(diǎn)點(diǎn)點(diǎn)點(diǎn)沿沿切切方方向向在在NdvdudP:)( ),0(1 nnkkPN使使N改改變變,隨隨切切方方向向)(d點(diǎn)點(diǎn)的的軌軌跡跡N .)(點(diǎn)點(diǎn)的的杜杜邦邦指指標(biāo)標(biāo)線線在在稱稱為為曲曲面面PS定義定義)(S方程方程urvr下下,在在標(biāo)標(biāo)架架,;vurrP),(yx1222 NyMxyLx曲面上點(diǎn)的分類

4、曲面上點(diǎn)的分類,)如如果果(012 MLN.為為曲曲面面的的橢橢圓圓點(diǎn)點(diǎn)則則稱稱點(diǎn)點(diǎn)P.橢橢圓圓此此時時,杜杜邦邦指指標(biāo)標(biāo)線線為為一一,)如如果果(022 MLN.為為曲曲面面的的雙雙曲曲點(diǎn)點(diǎn)則則稱稱點(diǎn)點(diǎn)P.對對共共軛軛雙雙曲曲線線此此時時,杜杜邦邦指指標(biāo)標(biāo)線線為為一一不不全全為為零零,但但)如如果果(MNLMLN,032 .為為曲曲面面的的拋拋物物點(diǎn)點(diǎn)則則稱稱點(diǎn)點(diǎn)P.對對平平行行直直線線此此時時,杜杜邦邦指指標(biāo)標(biāo)線線為為一一,)如如果果(04 MNL.為為曲曲面面的的平平點(diǎn)點(diǎn)則則稱稱點(diǎn)點(diǎn)P.在在此此時時,杜杜邦邦指指標(biāo)標(biāo)線線不不存存1.1.曲面的漸近方向曲面的漸近方向向向的的杜杜邦邦指指標(biāo)標(biāo)

5、線線的的漸漸近近方方在在點(diǎn)點(diǎn)曲曲面面PS)(定義定義.)(的的漸漸近近方方向向在在點(diǎn)點(diǎn)叫叫做做曲曲面面PS是是漸漸近近方方向向的的方方向向在在點(diǎn)點(diǎn)曲曲面面dvduPS:)(. 0222 NdvMdudvLdu漸近方向方程漸近方向方程注注漸近方向的個數(shù)漸近方向的個數(shù))1(,若若02 MLN即即橢橢圓圓點(diǎn)點(diǎn),.有有兩兩個個虛虛漸漸近近方方向向即即雙雙曲曲點(diǎn)點(diǎn),若若0 MNL,若若02 MLN.有有兩兩個個實(shí)實(shí)漸漸近近方方向向,若若02 MLN即即拋拋物物點(diǎn)點(diǎn),.有有一一個個實(shí)實(shí)漸漸近近方方向向即即平平點(diǎn)點(diǎn),.任任何何方方向向都都是是漸漸近近方方向向3.4 曲面的漸近方向和共軛方向曲面的漸近方向和共

6、軛方向,222222GdvFdudvEduNdvMdudvLduIIIkn )2(. 0: nkdvdu是是漸漸近近方方向向曲曲面面上上的的曲曲線線,定義定義方方向向都都是是如如果果它它上上面面每每一一點(diǎn)點(diǎn)的的切切漸漸近近方方向向,.則則稱稱為為漸漸近近曲曲線線. 0222 NdvMdudvLdu漸漸近近曲曲線線的的方方程程為為:定理定理.)()()()(的的切切平平面面重重合合平平面面與與或或者者它它在在每每一一點(diǎn)點(diǎn)的的密密切切是是直直線線或或者者是是漸漸近近曲曲線線上上的的曲曲線線曲曲面面SCCS定義定義的的漸漸近近曲曲線線網(wǎng)網(wǎng)稱稱為為曲曲面面曲曲線線網(wǎng)網(wǎng)上上兩兩族族漸漸近近曲曲線線構(gòu)構(gòu)成

7、成的的曲曲面面)()(SS注注只只含含橢橢圓圓點(diǎn)點(diǎn)的的曲曲面面上上, 無無漸漸近近曲曲線線, 也也無無漸漸近近曲曲線線網(wǎng)網(wǎng);只只含含雙雙曲曲點(diǎn)點(diǎn)的的曲曲面面上上,由由于于02 MLN曲曲線線,經(jīng)經(jīng)過過每每一一點(diǎn)點(diǎn)有有兩兩條條漸漸近近有有兩兩組組解解:即即漸漸近近曲曲線線方方程程0222 NdvMdudvLdu,011 dvBduA,022 dvBduA它它們們構(gòu)構(gòu)成成漸漸近近曲曲線線網(wǎng)網(wǎng);. )(簡簡稱稱漸漸近近網(wǎng)網(wǎng)只只含含拋拋物物點(diǎn)點(diǎn)的的曲曲面面上上,由由于于02 MLN, 0)(02222 BdvAduNdvMdudvLdu可可化化為為有有一一組組漸漸近近曲曲線線,只只含含拋拋物物點(diǎn)點(diǎn)的的

8、曲曲面面上上只只也也無無漸漸近近曲曲線線網(wǎng)網(wǎng);只只含含平平點(diǎn)點(diǎn)的的曲曲面面上上,由由于于0 MNL.是是漸漸近近曲曲線線網(wǎng)網(wǎng)曲曲面面上上的的任任何何曲曲線線網(wǎng)網(wǎng)都都命題命題3 3. 0 NL曲曲紋紋坐坐標(biāo)標(biāo)網(wǎng)網(wǎng)是是漸漸近近網(wǎng)網(wǎng)證證: :”“. 0222 NdvMdudvLdu漸漸近近網(wǎng)網(wǎng)的的方方程程為為:. 0 dudv曲曲紋紋坐坐標(biāo)標(biāo)網(wǎng)網(wǎng)的的方方程程為為:. 00 dvdu或或即即,若若曲曲紋紋坐坐標(biāo)標(biāo)網(wǎng)網(wǎng)是是漸漸近近網(wǎng)網(wǎng). 00 dvdu或或則則. 0 NL代代入入漸漸近近網(wǎng)網(wǎng)的的方方程程得得:”“,若若0 NL. 02 Mdudv則則漸漸近近網(wǎng)網(wǎng)方方程程變變?yōu)闉椋海? M. 0 dudv

9、.即即漸漸近近網(wǎng)網(wǎng)是是曲曲紋紋坐坐標(biāo)標(biāo)網(wǎng)網(wǎng)2.2.共軛方向共軛方向定義定義方方向向,點(diǎn)點(diǎn)的的杜杜邦邦指指標(biāo)標(biāo)線線的的共共軛軛在在是是和和點(diǎn)點(diǎn)的的兩兩個個方方向向在在若若曲曲面面PSdPS)()()()( .)()()(點(diǎn)點(diǎn)的的共共軛軛方方向向在在就就稱稱為為曲曲面面和和則則PSd . 1222 NyMxyLx杜杜邦邦指指標(biāo)標(biāo)線線的的方方程程為為于于是是有有定理定理共共軛軛和和兩兩個個方方向向vudvdud :)(:)( . 0)( vNdvudvvduMuLdu . 00 rdnrnd 或或即即事事實(shí)實(shí)上上,)()(vrurdvndunrndvuvu vNdvudvvduMuLdu )(. r

10、dn 共共軛軛和和兩兩個個方方向向vudvdud :)(:)( . 00 rdnrnd 或或定義定義曲曲線線網(wǎng)網(wǎng),曲曲面面上上兩兩族族曲曲線線構(gòu)構(gòu)成成的的方方向向都都共共軛軛,如如果果不不同同族族的的曲曲線線的的切切.曲曲線線網(wǎng)網(wǎng)則則稱稱這這個個曲曲線線網(wǎng)網(wǎng)為為共共軛軛命題命題曲曲線線族族)0(0),(),(22 BAdvvuBduvuA是是共共軛軛曲曲線線族族的的微微分分方方程程證:證:線線族族的的切切方方向向,是是已已知知曲曲線線族族的的共共軛軛曲曲設(shè)設(shè)vu :由由共共軛軛條條件件得得:. 0)()( vANBMuAMBL 0 BdvAdu且且 0)()(0dvvNuMduvMuLBdvA

11、du 于于是是方方程程組組.,的的二二元元齊齊次次線線性性方方程程組組是是關(guān)關(guān)于于dvdu. 0)( vNdvudvvduMuLdu 不不全全為為零零,dvdu,0 vNuMvMuLBA 展展開開整整理理得得:. 0)()( vANBMuAMBL 特特別別地地,:的的共共軛軛曲曲線線族族的的方方程程為為曲曲線線族族0 dvu. 0 vMuL 曲曲線線族族曲曲線線族族的的共共軛軛曲曲線線族族為為 vu. 0 M命題命題4 4. 0 M軛軛網(wǎng)網(wǎng)曲曲面面的的曲曲紋紋坐坐標(biāo)標(biāo)網(wǎng)網(wǎng)是是共共3.5 曲面的主方向和曲率線曲面的主方向和曲率線1.1.主方向主方向定義定義的的兩兩個個方方向向,曲曲面面在在一一點(diǎn)

12、點(diǎn) P,如如果果它它們們既既正正交交又又共共軛軛.的的主主方方向向則則稱稱為為曲曲面面在在點(diǎn)點(diǎn) P問題:問題:是否存在?是否存在?曲面在一點(diǎn)處的主方向曲面在一點(diǎn)處的主方向有有多多少少個個?若若存存在在,是是主主方方向向,設(shè)設(shè)方方向向dvdud:)( 是是另另一一個個主主方方向向,vu :)( 它它們們既既正正交交又又共共軛軛, 00nrdrrd .0)(0)( vNdvudvvduMuLduvGdvudvvduFuEdu 即即將將以以上上兩兩式式改改寫寫為為: 0)()(0)()(vNdvMduuMdvLduvGdvFduuFdvEdu 不不全全為為零零,vu ,0 NdvMduMdvLduG

13、dvFduFdvEdu上上式式還還能能寫寫成成:022 NMLGFEdududvdv反反之之, 將將上上述述過過程程逆逆推推可可知知,.)()(為主方向?yàn)橹鞣较蚝秃?d(*).(*)為為主主方方向向方方程程方方程程展展開開得得:將將022 NMLGFEdududvdv0)()()(22 dvGMFNdudvGLENduFLEM的的二二次次方方程程,這這是是關(guān)關(guān)于于dvdu:)(4)(2GMFNFLEMGLEN . 0)()( 4)(2)(2222 FLEMEFEGFLEMEFGLEN.(*)總總有有解解方方程程0,0 FLEMGLEN又又.0NGMFLE 即即.,每每一一個個方方向向都都是是主

14、主方方向向此此時時.(*),總總有有兩兩個個不不相相等等的的實(shí)實(shí)根根方方程程除除此此之之外外.兩兩個個主主方方向向曲曲面面在在每每一一個個點(diǎn)點(diǎn)處處總總有有定義定義.的的點(diǎn)點(diǎn)稱稱為為曲曲面面的的臍臍點(diǎn)點(diǎn)曲曲面面上上滿滿足足NGMFLE .0的的臍臍點(diǎn)點(diǎn)稱稱為為平平點(diǎn)點(diǎn)滿滿足足 NML.0,的的臍臍點(diǎn)點(diǎn)稱稱為為圓圓點(diǎn)點(diǎn)不不全全為為滿滿足足NML,不不全全為為圓圓點(diǎn)點(diǎn)平平點(diǎn)點(diǎn)臍臍點(diǎn)點(diǎn) 0,0NMLNML注注在在臍臍點(diǎn)點(diǎn)處處,(1),常常數(shù)數(shù))(222222 GdvFdudvEduNdvMdudvLduIIIkn.率率都都相相等等在在臍臍點(diǎn)點(diǎn)沿沿任任何何方方向向法法曲曲在在臍臍點(diǎn)點(diǎn)處處,(2),0 .

15、任任何何方方向向都都是是主主方方向向在在非非臍臍點(diǎn)點(diǎn)處處,0 .只只有有兩兩個個主主方方向向.有有兩兩個個主主方方向向曲曲面面在在每每一一個個點(diǎn)點(diǎn)處處至至少少例例5 5.是是平平點(diǎn)點(diǎn)證證明明平平面面上上每每一一個個點(diǎn)點(diǎn)都都證:證:0 ,yxr 平平面面方方程程為為:,0 , 0 , 1 xr0 , 1 , 0 yr,0 , 0 , 0 xxr,0 , 0 , 0 yxxyrr,0 , 0 , 0 yyr, 0 NML.點(diǎn)點(diǎn)平平面面上上每每一一個個點(diǎn)點(diǎn)都都是是平平例例6 6.是是圓圓點(diǎn)點(diǎn)證證明明球球面面上上每每一一個個點(diǎn)點(diǎn)都都證:證:sin,sincos,coscos: RRRr 球球面面方方程

16、程為為cos,sinsin,cossin RRRr 0 ,coscos,sincos RRr ,22RrE , 0 rrF,cos222 RrG 2FEGrrn sin,sincos,coscos 又又0 ,cossin,sinsin RRr sin,sincos,coscos RRRr nrL nrM nrN ,R , 0 ,cos2 R 0 ,sincos,coscos RRr ,RNGMFLE . 0,不不全全為為且且NML.點(diǎn)點(diǎn)球球面面上上每每一一個個點(diǎn)點(diǎn)都都是是圓圓.1RIIIkn 沿沿任任何何方方向向法法曲曲率率,22RrE , 0 rrF,cos222 RrG 主方向的判別定理主

17、方向的判別定理)(羅羅德德里里格格定定理理rdnddvdud 是是主主方方向向曲曲面面在在一一點(diǎn)點(diǎn)處處的的方方向向:)(.)(,的的法法曲曲率率)是是曲曲面面沿沿方方向向(其其中中dkknn 證:證:”“,)(是是主主方方向向設(shè)設(shè) d的的另另一一個個主主方方向向,是是垂垂直直于于)()(d ,則則它它們們既既垂垂直直又又共共軛軛, 00nrdrrd 是是單單位位向向量量,n,nnd ,nrrd 又又,都都在在切切平平面面上上與與rrdnd , rrdnd 得得:兩兩邊邊點(diǎn)點(diǎn)乘乘 r ,)()(2rrrdrnd , 0)(2 r , 0 r 而而, 0 . rdnd ”“,)(rdndd 滿滿足

18、足若若方方向向,垂垂直直的的方方向向取取與與)()( d,則則0 rrd 得得:兩兩邊邊點(diǎn)點(diǎn)乘乘 rrdnd , 0)( rrdrnd ,)()(既既垂垂直直又又共共軛軛與與 d.)(是是主主方方向向故故 d.nk 下下面面計(jì)計(jì)算算,得得由由rdnd ,2rdrdnd 2rdrdnd III .nk 注注出出,由由羅羅德德里里格格定定理理可可以以看看)1(是是主主方方向向,欲欲證證)(d./ ndrd只只需需證證.2叫叫羅羅德德里里格格方方程程)(rdnd 2.2.曲率線與曲率線網(wǎng)曲率線與曲率線網(wǎng)定義定義曲曲面面上上一一曲曲線線,向向都都是是主主方方向向,如如果果它它在在每每一一點(diǎn)點(diǎn)的的切切方

19、方曲曲率率線線,則則稱稱該該曲曲線線為為曲曲面面上上的的.線線網(wǎng)網(wǎng)稱稱為為曲曲率率線線網(wǎng)網(wǎng)由由兩兩族族曲曲率率線線構(gòu)構(gòu)成成的的曲曲方程方程022 NMLGFEdududvdv命題命題.標(biāo)標(biāo)網(wǎng)網(wǎng)可可使使曲曲率率線線網(wǎng)網(wǎng)為為曲曲紋紋坐坐,經(jīng)經(jīng)過過參參數(shù)數(shù)的的選選擇擇,在在不不含含臍臍點(diǎn)點(diǎn)的的曲曲面面片片上上證:證:曲曲率率線線網(wǎng)網(wǎng)的的微微分分方方程程為為022 NMLGFEdududvdv0)()()(22 dvGMFNdudvGLENduFLEM即即曲曲面面上上不不含含臍臍點(diǎn)點(diǎn),對對任任意意一一點(diǎn)點(diǎn)都都有有0 得得兩兩族族曲曲率率線線:故故上上式式可可通通過過因因式式分分解解)2 , 1(0 i

20、dvBduAii是是它它們們的的積積分分因因子子,則則設(shè)設(shè))2 , 1( ii 的的全全微微分分,為為vudvBduAdvBduA,22221111 ,22221111 dvBduAvddvBduAud 即即,),(),( vuvvvuuu這這相相當(dāng)當(dāng)于于作作參參數(shù)數(shù)變變換換且且其其雅雅可可比比行行列列式式. 0),(),(22112122221111 BABABABAvuvu . 0, 0, vdudvu為為新新參參數(shù)數(shù),且且.的的曲曲紋紋坐坐標(biāo)標(biāo)網(wǎng)網(wǎng)于于是是曲曲率率線線網(wǎng)網(wǎng)就就成成為為新新注注.標(biāo)標(biāo)網(wǎng)網(wǎng)線線網(wǎng)網(wǎng)都都可可以以選選為為曲曲紋紋坐坐曲曲面面上上任任何何一一個個正正規(guī)規(guī)曲曲類類似似

21、可可以以證證明明:命題命題5 5. 0 MF曲曲紋紋坐坐標(biāo)標(biāo)網(wǎng)網(wǎng)是是曲曲率率線線網(wǎng)網(wǎng)例例7 7.求求旋旋轉(zhuǎn)轉(zhuǎn)曲曲面面的的曲曲率率線線)(,sin)(,cos)(tttr 旋旋轉(zhuǎn)轉(zhuǎn)曲曲面面的的方方程程為為解:解:0 ,cos,sin r,sin,cos tr,sin,cos ttr,0 ,cos,sin tr0 ,sin,cos r,sin,cos rrt0 MF.網(wǎng)網(wǎng)曲曲率率線線網(wǎng)網(wǎng)就就是是曲曲紋紋坐坐標(biāo)標(biāo).和和緯緯圓圓組組成成的的曲曲線線網(wǎng)網(wǎng)即即曲曲率率線線網(wǎng)網(wǎng)就就是是子子午午線線3.6 曲面的主曲率、高斯曲率和平均曲率曲面的主曲率、高斯曲率和平均曲率1.1.主曲率主曲率定義定義.的的主主曲

22、曲率率曲曲面面在在此此點(diǎn)點(diǎn)沿沿主主方方向向的的法法曲曲率率稱稱為為曲曲面面在在一一點(diǎn)點(diǎn) P),(: )(vurrS P網(wǎng)網(wǎng),取取曲曲率率線線網(wǎng)網(wǎng)為為曲曲紋紋坐坐標(biāo)標(biāo). 0 MF則則dvdud:)( 22GdvEduI 22NdvLduII ,2222GdvEduNdvLduIIIkn urvr,1ELku 曲曲線線的的主主曲曲率率沿沿,2GNkv 曲曲線線的的主主曲曲率率沿沿),(: )(vurrS Pdvdud:)( urvr rdrrdruu cos則則22)()(dvrdurrdvrdurrvuuvuu ,22GdvEduEEdu ,cos2222GdvEduEdu ,cos1sin22

23、222GdvEduGdv 2222GdvEduNdvLdukn 222222GdvEduGdvGNGdvEduEduEL .sincos2221 kk .sincos2221 kkkn 歐歐拉拉公公式式),(: )(vurrS Pdvdud:)( urvr .sincos2221 kkkn 歐歐拉拉公公式式注注.)()1(歐歐拉拉公公式式仍仍然然成成立立,的的夾夾角角與與換換成成若若將將角角 vrd事事實(shí)實(shí)上上,)2(sin)2(cos2221 kkkn 2221cossinkk .sincos2122 kk 2 .)2(然然成成立立在在臍臍點(diǎn)點(diǎn)處處,歐歐拉拉公公式式仍仍,此此時時21kk .

24、21kkkn 沿沿任任何何方方向向的的法法曲曲率率命題命題6 6.小小值值的的法法曲曲率率的的最最大大值值和和最最曲曲面面在在這這點(diǎn)點(diǎn)所所有有方方向向曲曲面面在在一一點(diǎn)點(diǎn)的的主主曲曲率率是是證:證:點(diǎn)點(diǎn)的的兩兩個個主主曲曲率率,在在是是曲曲面面,設(shè)設(shè)PSkk)(21.是是臍臍點(diǎn)點(diǎn),顯顯然然成成立立若若點(diǎn)點(diǎn)P是是非非臍臍點(diǎn)點(diǎn),若若點(diǎn)點(diǎn)P,則則21kk ,不不妨妨設(shè)設(shè)21kk ,是是沿沿任任意意方方向向的的法法曲曲率率nk.sincos2221 kkkn 則則 222122sincoskkkkkn 2122cos)sin1(kk 2122coscoskk 212cos)(kk . 0 .2nkk

25、.,22等等號號成成立立所所在在方方向向共共線線時時與與即即當(dāng)當(dāng)且且僅僅當(dāng)當(dāng)kkn .1kkn 同同理理可可得得.21kkkn 總總之之,主曲率的計(jì)算公式主曲率的計(jì)算公式網(wǎng)網(wǎng),若若曲曲率率線線網(wǎng)網(wǎng)是是曲曲紋紋坐坐標(biāo)標(biāo))1(,1ELk 則則;2GNk 一一般般情情況況,)2(由由羅羅德德里里格格定定理理,有有:沿沿主主方方向向)(drdkndN .)(的的主主曲曲率率是是沿沿主主方方向向其其中中dkN上上式式又又可可寫寫成成:)(dvrdurkdvndunvuNvu 得得:兩兩邊邊分分別別點(diǎn)點(diǎn)乘乘vurr,)(FdvEdukMdvLduN )(GdvFdukNdvMduN 即即:0)()( dv

26、FkMduEkLNN0)()( dvGkNduFkMNN,不不全全為為0,dvdu0 NNNNGkNFkMFkMEkL即即:0)()2()(222 MLNkNEMFLGkFEGNN.主主曲曲率率的的計(jì)計(jì)算算公公式式 , 0 其其中中相相等等的的實(shí)實(shí)根根;在在非非臍臍點(diǎn)點(diǎn)處處,有有兩兩個個不不的的實(shí)實(shí)根根,在在臍臍點(diǎn)點(diǎn)處處,有有兩兩個個相相等等.只只有有一一個個值值即即Nk2.2.高斯曲率和平均曲率高斯曲率和平均曲率定義定義在在該該點(diǎn)點(diǎn)的的高高斯斯曲曲率率之之積積叫叫做做曲曲面面率率曲曲面面在在一一點(diǎn)點(diǎn)的的兩兩個個主主曲曲21,kk.(或或全全曲曲率率).K記記作作在在該該點(diǎn)點(diǎn)的的平平均均曲曲率

27、率的的平平均均值值叫叫做做曲曲面面率率曲曲面面在在一一點(diǎn)點(diǎn)的的兩兩個個主主曲曲21,kk.(或或中中曲曲率率).H記記作作由由主主曲曲率率的的計(jì)計(jì)算算公公式式0)()2()(222 MLNkNEMFLGkFEGNN:得得2221FEGMLNkkK )(222221FEGNEMFLGkkH ).,(:)(yxfzS 若若曲曲面面,1,122qGpqFpE 則則,122qprL ,122qpsM ,122qptN ,1222qpFEG ,)1(2222qpsrtK ,)1(2)1(2)1(232222qptqpqsrqH 例例8 8.)0)()(,sin)(,cos)(平平均均曲曲率率的的主主曲曲

28、率率、高高斯斯曲曲率率和和求求旋旋轉(zhuǎn)轉(zhuǎn)曲曲面面 uuuur 解:解:,)(,sin)(,cos)(uuuru ,0 ,cos)(,sin)( uur ,)(,sin)(,cos)(uuuruu ,0 ,cos)(,sin)(uuruur ,0 ,sin)(,cos)( uur ,sin,cos rru22,sin,cos rrrrnuu,22 E,0 F,2 Gxyzo),(zyx ,)()( uzux nrLuu nrMu nrN ,22 , 0 ,22 , 0 FMELk 1GNk 2,)(2322 ,)(2122 ,)()(22221 kkK.)(2)()(223222221 kkH特特

29、別別地地, )()(uzuxxoz 面面上上最最初初的的曲曲線線為為若若取取uz )( xyzo),(zyx ,)(23221 k,)(21222 k,)()(222 K.)(2)()(232222 H,作作為為最最初初的的曲曲線線的的參參數(shù)數(shù)即即取取z)0)(,sin)(,cos)( zzzzr 于于是是旋旋轉(zhuǎn)轉(zhuǎn)曲曲面面方方程程為為,)1(2321 k此此時時,)1(12122 k,)1(22 K.)1(212322 H例例9 9.求求出出極極小小的的旋旋轉(zhuǎn)轉(zhuǎn)曲曲面面注:注:.0的的曲曲面面叫叫做做極極小小曲曲面面平平均均曲曲率率 H解:解:2322)1(21 H令令. 0 ,得得:012

30、, 112 , 21221,即即ln )1ln(212 , lnln)1ln(212 a, 21a)(為為正正常常數(shù)數(shù)其其中中a,22)(1a ,11)(2 a 可可化化為為,aaa11ln22 積積分分得得:,Cazaa 1)(ln2 )(為為任任意意常常數(shù)數(shù)其其中中C,令令0 C,則則azeaa 1)(2 )2(azazeea 解解得得:azacosh )(懸懸鏈鏈線線程程為為:軸軸旋旋轉(zhuǎn)轉(zhuǎn)所所得得旋旋轉(zhuǎn)轉(zhuǎn)曲曲面面方方將將此此曲曲線線繞繞z.,sincosh,coscoshzazaazar )(懸懸鏈鏈面面xyzo3.7 曲面在一點(diǎn)鄰近的結(jié)構(gòu)曲面在一點(diǎn)鄰近的結(jié)構(gòu)曲面上點(diǎn)的分類曲面上點(diǎn)的分類

31、,)(012 MLN橢橢圓圓點(diǎn)點(diǎn),)(022 MLN雙雙曲曲點(diǎn)點(diǎn),)(032 MLN拋拋物物點(diǎn)點(diǎn),)(04 MNL平平點(diǎn)點(diǎn) 22FEGMLNK . 0 K. 0 K. 0 K 橢橢圓圓點(diǎn)點(diǎn)1. 021 kkK. 0, 021 kk不不妨妨設(shè)設(shè) 2221sincoskkkn . 0 的的正正方方向向彎彎曲曲,方方向向的的法法截截線線總總朝朝沿沿nkn.nk且且曲曲率率即即為為;21211xkyk 于于的的主主方方向向的的法法截截線線近近似似故故沿沿;21222xkyk 于于的的主主方方向向的的法法截截線線近近似似沿沿.212xkyknn 于于的的主主方方向向的的法法截截線線近近似似沿沿1k2kn

32、.個個橢橢圓圓拋拋物物面面曲曲面面在在橢橢圓圓點(diǎn)點(diǎn)近近似似于于一一雙雙曲曲點(diǎn)點(diǎn)2. 021 kkK. 0, 021 kk不不妨妨設(shè)設(shè),21211xkyk 于于的的主主方方向向的的法法截截線線近近似似故故沿沿.的的負(fù)負(fù)向向一一側(cè)側(cè)彎彎曲曲且且向向n;21222xkyk 于于的的主主方方向向的的法法截截線線近近似似沿沿.的的正正向向一一側(cè)側(cè)彎彎曲曲且且向向n 2221sincoskkkn 的的變變化化情情況況如如下下表表:各各方方向向法法曲曲率率nk nk02 23 21k2k001k02k01k1k2k0 0 0 nk0 nk0 nk0 nk 0 nk0 nk 0 nk0 nk , 0sinco

33、s2221 kk令令21tankk 得得:1k2knP.物物面面曲曲面面近近似似于于一一個個雙雙曲曲拋拋拋拋物物點(diǎn)點(diǎn)3, 021 kkK不不全全為為零零,但但MNL,,有有一一個個不不為為有有一一個個為為此此時時0, 0,21kk, 0(21 kk若若,則則0sincos2221 kkkn,任任何何方方向向都都是是漸漸近近方方向向)與與拋拋物物點(diǎn)點(diǎn)矛矛盾盾, 0, 021 kk不不妨妨設(shè)設(shè),21211xkyk 于于的的主主方方向向的的法法截截線線近近似似故故沿沿.的的負(fù)負(fù)向向一一側(cè)側(cè)彎彎曲曲且且向向n的的主主方方向向是是漸漸近近方方向向,沿沿02 k.法法截截線線形形狀狀比比較較復(fù)復(fù)雜雜, 0

34、2 k若若,6132xky 法法截截線線近近似似于于.是是一一條條立立方方拋拋物物線線, 021 kkkn.的的負(fù)負(fù)向向一一側(cè)側(cè)彎彎曲曲一一切切法法截截線線都都向向n.個個拋拋物物柱柱面面曲曲面面在在拋拋物物點(diǎn)點(diǎn)近近似似于于一一Pn1k2k平平點(diǎn)點(diǎn)4, 0 MNL且且, 021 kk此此時時, 021 kkK, 0, 021 kk不不妨妨設(shè)設(shè),61311xkyk 方方向向的的法法截截線線近近似似于于沿沿.61322xkyk 方方向向的的法法截截線線近近似似于于沿沿233xyxz 猴猴鞍鞍面面3.8 高斯曲率的幾何意義高斯曲率的幾何意義1.1.曲面的球面表示、曲面的第三基本形式曲面的球面表示、曲

35、面的第三基本形式定義定義),(: )(vurrS P.),( vu),( vunn P . :G),( vunn ),( vur高高斯斯映映射射曲曲面面的的球球面面表表示示),( vur .)(的的球球面面像像的的區(qū)區(qū)域域稱稱為為曲曲面面上上 S 注注.)1(映映射射不不一一定定是是一一一一映映射射Gauss平平面面的的球球面面像像是是如如:一一個個點(diǎn)點(diǎn);圓圓柱柱面面的的球球面面像像是是一一條條曲曲線線).(圓圓.)()2(映映射射是是一一一一映映射射則則上上無無拋拋物物點(diǎn)點(diǎn)或或平平點(diǎn)點(diǎn),若若曲曲面面GaussS)28(習(xí)習(xí)題題定義定義基基本本形形式式曲曲面面的的球球面面表表示示的的第第一一22222gdvfdudvedundds .式式叫叫做做曲曲面面的的第第三三基基本本形形.III記記作作2222gdvfdudved

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論