版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡介
1、Discrete Fourier TransformDefinitionDFT Computation Using MATLABRelation between DTFT and DFT and their inversesA simple DFT application-linear convolution12Linear Convolution Using DTFT1) Compute the DTFTs and of the sequences xn and hn, respectively2) Form the DTFT3) Compute the IDFT yn of xnhnynD
2、TFTDTFTIDTFT3Problems Needed to be Solved in Practical Applications4Discrete Fourier TransformDefinition - The simplest relation between a length-N sequence xn, defined for , and its DTFT , it is obtained by uniformly sampling on the w-axis between at ,From the definition of the DTFT we thus have5有限
3、長序列的DFT就是序列的傅里葉變換以 為間隔的抽樣值 Discrete Fourier TransformDiscretization in Time-domain and Frequency-domain7Time-domainSamplingFrequency-domainSamplingDTFTDFTDiscrete Fourier TransformNote: Xk is also a length-N sequence in the frequency domainThe sequence Xk is called the discrete Fourier transform (DF
4、T) of the sequence xnUsing the notation the DFT is usually expressed as:8Discrete Fourier TransformThe inverse discrete Fourier transform (IDFT) is given by9Discrete Fourier TransformDFT: analysis equationIDFT: synthesis equationtime domainfrequency domain10Transformation method NameTime domaintrans
5、form domainTransformation method Continuous-time Fourier Transform (CTFT)Discrete-Time Fourier Transform (DTFT)Discrete Fourier Transform (DFT)11Discrete Fourier TransformExample - Consider the length-N sequenceIts N-point DFT is given by 12Discrete Fourier TransformExample - Consider the length-N s
6、equenceIts N-point DFT is given by 13Discrete Fourier TransformExample - Consider the length-N sequence defined forUsing a trigonometric identity we can write14Discrete Fourier TransformThe N-point DFT of gn is thus given by15Discrete Fourier TransformMaking use of the identitywe getr an integer16DF
7、T Computation Using MATLABExample figure below shows the DFT and the DTFT of the sequenceindicates DFT samples17Xk=8, k=38, k=130, otherwiseDFT Computation Using MATLAB18DFT Computation Using MATLAB19DFT Computation Using MATLABThe functions to compute the DFT and the IDFT are fft and ifftThese func
8、tions make use of Fast Fourier Transform (FFT) algorithms which are computationally highly efficient compared to the direct computationR=(computation complexity of FFT)/ (computation complexity of DFT)=(Nlog2N)/(N(N-1) log2(N)/NE.g., N=1024, R=1/200, 2021有限長序列的DFT就是序列的傅里葉變換以 為間隔的抽樣值 Discrete Fourier
9、 TransformDTFT from DFT by Interpolation The N-point DFT Xk of a length-N sequence xn is simply the frequency samples of its DTFT evaluated at N uniformly spaced frequency pointsGiven the N-point DFT Xk of a length-N sequence xn, its DTFT can be uniquely determined from Xk 23DTFT from DFT by Interpo
10、lationThus24DTFT from DFT by InterpolationIt can readily be shown that25Sampling the DTFTConsider a length-M sequence xn with a DTFTWe sample at N equally spaced points , developing the N frequency samplesThese N frequency samples can be considered as an N-point DFT Yk whose N-point IDFT is a length
11、-N sequence yn26Sampling the DTFTNowThusAn IDFT of Yk yields27Sampling the DTFTi.e.Making use of the identity28Sampling the DTFTwe arrive at the desired relationThus yn is obtained from xn by adding an infinite number of shifted replicas of xn, with each replica shifted by an integer multiple of N s
12、ampling instants, and observing the sum only for the interval29yn=xn+xn+8+xn-8,0=n=730Sampling the DTFTTo applyto finite-length sequences, we assume that the samples outside the specified range are zerosThus if xn is a length-M sequence with , then yn = xn for32Sampling the DTFTIf N M, there is a ti
13、me-domain aliasing of samples of xn in generating yn, and xn cannot be recovered from ynExample - Let By sampling its DTFT at , and then applying a 8-point IDFT to these samples, according to last slide, we arrive at the sequence yn given by 33Sampling the DTFTyn=xn+xn+8+xn-8,0=n N:41有限長序列的DFT就是序列的傅
14、里葉變換以 為間隔的抽樣值 Discrete Fourier TransformNumerical Computation of the DTFT Using the DFTDefine a new sequenceThen43Numerical Computation of the DTFT Using the DFTThus is essentially an M-point DFT of the length-M sequenceThe DFT can be computed very efficiently using the FFT algorithm if M is an inte
15、ger power of 2The function freqz employs this approach to evaluate the frequency response at a prescribed set of frequencies of a DTFT expressed as a rational function of 44工程上所遇到的信號,包括傳感器的輸出信號,大多是連續(xù)非周期信號,這種信號無論是在時域或頻域都是連續(xù)的,其波形和頻譜如下圖所示。0ax (t)t連續(xù)非周期信號時域波形和頻譜Digital spectrum analysis of continuous-tim
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 遼寧科技大學(xué)《中外戲劇鑒賞》2023-2024學(xué)年第一學(xué)期期末試卷
- 昆明理工大學(xué)《五官科護(hù)理學(xué)》2023-2024學(xué)年第一學(xué)期期末試卷
- 江蘇農(nóng)林職業(yè)技術(shù)學(xué)院《金融建模與計(jì)算》2023-2024學(xué)年第一學(xué)期期末試卷
- 吉林工程職業(yè)學(xué)院《植物食品加工工藝學(xué)》2023-2024學(xué)年第一學(xué)期期末試卷
- 湖南女子學(xué)院《材料分析測試原理》2023-2024學(xué)年第一學(xué)期期末試卷
- 【物理】第十章 浮力 單元練習(xí)+-2024-2025學(xué)年人教版物理八年級下冊
- 黑龍江能源職業(yè)學(xué)院《政治學(xué)導(dǎo)論》2023-2024學(xué)年第一學(xué)期期末試卷
- 高考物理總復(fù)習(xí)《電磁感應(yīng)規(guī)律及應(yīng)用》專項(xiàng)測試卷含答案
- 重慶五一職業(yè)技術(shù)學(xué)院《導(dǎo)航與制導(dǎo)系統(tǒng)》2023-2024學(xué)年第一學(xué)期期末試卷
- 重慶工貿(mào)職業(yè)技術(shù)學(xué)院《測繪學(xué)概論》2023-2024學(xué)年第一學(xué)期期末試卷
- 2025新北師大版英語七年級下單詞表
- 《智慧城市概述》課件
- 2024年北京市家庭教育需求及發(fā)展趨勢白皮書
- GB/T 45089-20240~3歲嬰幼兒居家照護(hù)服務(wù)規(guī)范
- 中建道路排水工程施工方案
- 拆機(jī)移機(jī)合同范例
- 智能停車充電一體化解決方案
- 化學(xué)驗(yàn)室安全培訓(xùn)
- 天書奇譚美術(shù)課件
- GB/T 18916.15-2024工業(yè)用水定額第15部分:白酒
- 部編四年級道德與法治下冊全冊教案(含反思)
評論
0/150
提交評論