版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡(jiǎn)介
1、2021-2022高考數(shù)學(xué)模擬試卷考生請(qǐng)注意:1答題前請(qǐng)將考場(chǎng)、試室號(hào)、座位號(hào)、考生號(hào)、姓名寫在試卷密封線內(nèi),不得在試卷上作任何標(biāo)記。2第一部分選擇題每小題選出答案后,需將答案寫在試卷指定的括號(hào)內(nèi),第二部分非選擇題答案寫在試卷題目指定的位置上。3考生必須保證答題卡的整潔??荚嚱Y(jié)束后,請(qǐng)將本試卷和答題卡一并交回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1若復(fù)數(shù)滿足,則的虛部為( )A5BCD-52ABC中,AB3,AC4,則ABC的面積是( )ABC3D3趙爽是我國(guó)古代數(shù)學(xué)家、天文學(xué)家,大約公元222年,趙爽為周髀算經(jīng)一書作序時(shí),介紹
2、了“勾股圓方圖”,又稱“趙爽弦圖”(以弦為邊長(zhǎng)得到的正方形是由個(gè)全等的直角三角形再加上中間的一個(gè)小正方形組成的,如圖(1),類比“趙爽弦圖”,可類似地構(gòu)造如圖(2)所示的圖形,它是由個(gè)全等的三角形與中間的一個(gè)小正六邊形組成的一個(gè)大正六邊形,設(shè),若在大正六邊形中隨機(jī)取一點(diǎn),則此點(diǎn)取自小正六邊形的概率為( )ABCD4若,點(diǎn)C在AB上,且,設(shè),則的值為( )ABCD5已知集合,若,則( )ABCD6已知平面向量滿足與的夾角為,且,則實(shí)數(shù)的值為( )ABCD7已知向量,則向量在向量上的投影是( )ABCD8執(zhí)行如圖所示的程序框圖,若輸出的,則輸入的整數(shù)的最大值為( )A7B15C31D639已知函數(shù)
3、,則( )A1B2C3D410某大學(xué)計(jì)算機(jī)學(xué)院的薛教授在2019年人工智能方向招收了6名研究生.薛教授欲從人工智能領(lǐng)域的語音識(shí)別、人臉識(shí)別,數(shù)據(jù)分析、機(jī)器學(xué)習(xí)、服務(wù)器開發(fā)五個(gè)方向展開研究,且每個(gè)方向均有研究生學(xué)習(xí),其中劉澤同學(xué)學(xué)習(xí)人臉識(shí)別,則這6名研究生不同的分配方向共有( )A480種B360種C240種D120種11九章算術(shù)中將底面是直角三角形的直三棱柱稱為“塹堵”.某“塹堵”的三視圖如圖,則它的外接球的表面積為( )A4B8CD12執(zhí)行如圖的程序框圖,若輸出的結(jié)果,則輸入的值為( )ABC3或D或二、填空題:本題共4小題,每小題5分,共20分。13已知函數(shù)若關(guān)于的不等式的解集為,則實(shí)數(shù)的
4、所有可能值之和為_.14已知正方體ABCD-A1B1C1D1棱長(zhǎng)為2,點(diǎn)P是上底面A1B1C1D1內(nèi)一動(dòng)點(diǎn),若三棱錐P-ABC的外接球表面積恰為414,則此時(shí)點(diǎn)P構(gòu)成的圖形面積為_.15已知三棱錐的四個(gè)頂點(diǎn)都在球O的球面上,E,F(xiàn)分別為,的中點(diǎn),則球O的體積為_.16九章算術(shù)是中國(guó)古代的數(shù)學(xué)名著,其中方田一章給出了弧田面積的計(jì)算公式如圖所示,弧田是由圓弧AB和其所對(duì)弦AB圍成的圖形,若弧田的弧AB長(zhǎng)為4,弧所在的圓的半徑為6,則弧田的弦AB長(zhǎng)是_,弧田的面積是_三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17(12分)設(shè)函數(shù)(1)求不等式的解集;(2)若的最小值為,且,求的最
5、小值18(12分)已知集合,將的所有子集任意排列,得到一個(gè)有序集合組,其中.記集合中元素的個(gè)數(shù)為,規(guī)定空集中元素的個(gè)數(shù)為.當(dāng)時(shí),求的值;利用數(shù)學(xué)歸納法證明:不論為何值,總存在有序集合組,滿足任意,都有.19(12分)已知函數(shù)(),不等式的解集為.(1)求的值;(2)若,且,求的最大值.20(12分)在中,內(nèi)角的對(duì)邊分別是,已知(1)求的值;(2)若,求的面積21(12分)已知數(shù)列的各項(xiàng)均為正數(shù),為其前n項(xiàng)和,對(duì)于任意的滿足關(guān)系式.(1)求數(shù)列的通項(xiàng)公式;(2)設(shè)數(shù)列的通項(xiàng)公式是,前n項(xiàng)和為,求證:對(duì)于任意的正數(shù)n,總有.22(10分)如圖,在直角梯形中,為的中點(diǎn),沿將折起,使得點(diǎn)到點(diǎn)位置,且,
6、為的中點(diǎn),是上的動(dòng)點(diǎn)(與點(diǎn),不重合).()證明:平面平面垂直;()是否存在點(diǎn),使得二面角的余弦值?若存在,確定點(diǎn)位置;若不存在,說明理由.參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1C【解析】把已知等式變形,再由復(fù)數(shù)代數(shù)形式的乘除運(yùn)算化簡(jiǎn)得答案【詳解】由(1+i)z|3+4i|,得z,z的虛部為故選C【點(diǎn)睛】本題考查復(fù)數(shù)代數(shù)形式的乘除運(yùn)算,考查復(fù)數(shù)的基本概念,是基礎(chǔ)題2A【解析】由余弦定理求出角,再由三角形面積公式計(jì)算即可.【詳解】由余弦定理得:,又,所以得,故ABC的面積.故選:A【點(diǎn)睛】本題主要考查了余弦定理的應(yīng)用,三角形
7、的面積公式,考查了學(xué)生的運(yùn)算求解能力.3D【解析】設(shè),則,小正六邊形的邊長(zhǎng)為,利用余弦定理可得大正六邊形的邊長(zhǎng)為,再利用面積之比可得結(jié)論.【詳解】由題意,設(shè),則,即小正六邊形的邊長(zhǎng)為,所以,在中,由余弦定理得,即,解得,所以,大正六邊形的邊長(zhǎng)為,所以,小正六邊形的面積為,大正六邊形的面積為,所以,此點(diǎn)取自小正六邊形的概率.故選:D.【點(diǎn)睛】本題考查概率的求法,考查余弦定理、幾何概型等基礎(chǔ)知識(shí),考查運(yùn)算求解能力,屬于基礎(chǔ)題4B【解析】利用向量的數(shù)量積運(yùn)算即可算出【詳解】解:,又在上,故選:【點(diǎn)睛】本題主要考查了向量的基本運(yùn)算的應(yīng)用,向量的基本定理的應(yīng)用及向量共線定理等知識(shí)的綜合應(yīng)用5A【解析】由
8、,得,代入集合B即可得.【詳解】,即:,故選:A【點(diǎn)睛】本題考查了集合交集的含義,也考查了元素與集合的關(guān)系,屬于基礎(chǔ)題.6D【解析】由已知可得,結(jié)合向量數(shù)量積的運(yùn)算律,建立方程,求解即可.【詳解】依題意得由,得即,解得.故選:.【點(diǎn)睛】本題考查向量的數(shù)量積運(yùn)算,向量垂直的應(yīng)用,考查計(jì)算求解能力,屬于基礎(chǔ)題.7A【解析】先利用向量坐標(biāo)運(yùn)算求解,再利用向量在向量上的投影公式即得解【詳解】由于向量,故向量在向量上的投影是.故選:A【點(diǎn)睛】本題考查了向量加法、減法的坐標(biāo)運(yùn)算和向量投影的概念,考查了學(xué)生概念理解,數(shù)學(xué)運(yùn)算的能力,屬于中檔題.8B【解析】試題分析:由程序框圖可知:,;,;,;,;,. 第步
9、后輸出,此時(shí),則的最大值為15,故選B.考點(diǎn):程序框圖.9C【解析】結(jié)合分段函數(shù)的解析式,先求出,進(jìn)而可求出.【詳解】由題意可得,則.故選:C.【點(diǎn)睛】本題考查了求函數(shù)的值,考查了分段函數(shù)的性質(zhì),考查運(yùn)算求解能力,屬于基礎(chǔ)題.10B【解析】將人臉識(shí)別方向的人數(shù)分成:有人、有人兩種情況進(jìn)行分類討論,結(jié)合捆綁計(jì)算出不同的分配方法數(shù).【詳解】當(dāng)人臉識(shí)別方向有2人時(shí),有種,當(dāng)人臉識(shí)別方向有1人時(shí),有種,共有360種.故選:B【點(diǎn)睛】本小題主要考查簡(jiǎn)單排列組合問題,考查分類討論的數(shù)學(xué)思想方法,屬于基礎(chǔ)題.11B【解析】由三視圖判斷出原圖,將幾何體補(bǔ)形為長(zhǎng)方體,由此計(jì)算出幾何體外接球的直徑,進(jìn)而求得球的表
10、面積.【詳解】根據(jù)題意和三視圖知幾何體是一個(gè)底面為直角三角形的直三棱柱,底面直角三角形的斜邊為2,側(cè)棱長(zhǎng)為2且與底面垂直,因?yàn)橹比庵梢詮?fù)原成一個(gè)長(zhǎng)方體,該長(zhǎng)方體外接球就是該三棱柱的外接球,長(zhǎng)方體對(duì)角線就是外接球直徑,則,那么.故選:B【點(diǎn)睛】本小題主要考查三視圖還原原圖,考查幾何體外接球的有關(guān)計(jì)算,屬于基礎(chǔ)題.12D【解析】根據(jù)逆運(yùn)算,倒推回求x的值,根據(jù)x的范圍取舍即可得選項(xiàng).【詳解】因?yàn)?所以當(dāng),解得,所以3是輸入的x的值;當(dāng)時(shí),解得,所以是輸入的x的值,所以輸入的x的值為或3,故選:D.【點(diǎn)睛】本題考查了程序框圖的簡(jiǎn)單應(yīng)用,通過結(jié)果反求輸入的值,屬于基礎(chǔ)題.二、填空題:本題共4小題,
11、每小題5分,共20分。13【解析】由分段函數(shù)可得不滿足題意;時(shí),可得,即有,解方程可得,4,結(jié)合指數(shù)函數(shù)的圖象和二次函數(shù)的圖象即可得到所求和【詳解】解:由函數(shù),可得的增區(qū)間為,時(shí),時(shí),當(dāng)關(guān)于的不等式的解集為,可得不成立,時(shí),時(shí),不成立;,即為,可得,即有,顯然,4成立;由和的圖象可得在僅有兩個(gè)交點(diǎn)綜上可得的所有值的和為1故答案為:1【點(diǎn)睛】本題考查分段函數(shù)的圖象和性質(zhì),考查不等式的解法,注意運(yùn)用分類討論思想方法,考查化簡(jiǎn)運(yùn)算能力,屬于中檔題14.【解析】設(shè)三棱錐P-ABC的外接球?yàn)榍騉,分別取AC、A1C1的中點(diǎn)O、O1,先確定球心O在線段AC和A1C1中點(diǎn)的連線上,先求出球O的半徑R的值,然
12、后利用勾股定理求出OO的值,于是得出OO1=OO1-OO,再利用勾股定理求出點(diǎn)P在上底面軌跡圓的半徑長(zhǎng),最后利用圓的面積公式可求出答案【詳解】如圖所示,設(shè)三棱錐P-ABC的外接球?yàn)榍騉,分別取AC、A1C1的中點(diǎn)O、O1,則點(diǎn)O在線段OO1上,由于正方體ABCD-A1B1C1D1的棱長(zhǎng)為2,則ABC的外接圓的半徑為OA=2,設(shè)球O的半徑為R,則4R2=414,解得R=414.所以,OO=R2-OA2=34,則OO1=OO1-OO=2-34=54而點(diǎn)P在上底面A1B1C1D1所形成的軌跡是以O(shè)1為圓心的圓,由于OP=R=414,所以O(shè)1P=R2-OO12=1,因此,點(diǎn)P所構(gòu)成的圖形的面積為O1P
13、2=.【點(diǎn)睛】本題考查三棱錐的外接球的相關(guān)問題,根據(jù)立體幾何中的線段關(guān)系求動(dòng)點(diǎn)的軌跡,屬于中檔題.15【解析】可證,則為的外心,又則平面即可求出,的值,再由勾股定理求出外接球的半徑,最后根據(jù)體積公式計(jì)算可得.【詳解】解:,因?yàn)闉榈闹悬c(diǎn),所以為的外心,因?yàn)?,所以點(diǎn)在內(nèi)的投影為的外心,所以平面,平面,所以,所以,又球心在上,設(shè),則,所以,所以球O體積,.故答案為:【點(diǎn)睛】本題考查多面體外接球體積的求法,考查空間想象能力與思維能力,考查計(jì)算能力,屬于中檔題166 129 【解析】過作,交于,先求得圓心角的弧度數(shù),然后解解三角形求得的長(zhǎng).利用扇形面積減去三角形的面積,求得弧田的面積.【詳解】如圖,弧田
14、的弧AB長(zhǎng)為4,弧所在的圓的半徑為6,過作,交于,根據(jù)圓的幾何性質(zhì)可知,垂直平分.AOB,可得AOD,OA6,AB2AD2OAsin26,弧田的面積SS扇形OABSOAB46129故答案為:6,129【點(diǎn)睛】本小題主要考查弓形弦長(zhǎng)和弓形面積的計(jì)算,考查中國(guó)古代數(shù)學(xué)文化,屬于中檔題.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17(1)或(2)最小值為【解析】(1)討論,三種情況,分別計(jì)算得到答案.(2)計(jì)算得到,再利用均值不等式計(jì)算得到答案.【詳解】(1)當(dāng)時(shí),由,解得;當(dāng)時(shí),由,解得;當(dāng)時(shí),由,解得所以所求不等式的解集為或(2)根據(jù)函數(shù)圖像知:當(dāng)時(shí),所以因?yàn)?,由,可知,所?/p>
15、,當(dāng)且僅當(dāng),時(shí),等號(hào)成立所以的最小值為【點(diǎn)睛】本題考查了解絕對(duì)值不等式,函數(shù)最值,均值不等式,意在考查學(xué)生對(duì)于不等式,函數(shù)知識(shí)的綜合應(yīng)用.18;證明見解析.【解析】當(dāng)時(shí),集合共有個(gè)子集,即可求出結(jié)果;分類討論,利用數(shù)學(xué)歸納法證明.【詳解】當(dāng)時(shí),集合共有個(gè)子集,所以;當(dāng)時(shí),由可知,此時(shí)令,滿足對(duì)任意,都有,且;假設(shè)當(dāng)時(shí),存在有序集合組滿足題意,且,則當(dāng)時(shí),集合的子集個(gè)數(shù)為個(gè),因?yàn)槭?的整數(shù)倍,所以令,且恒成立,即滿足對(duì)任意,都有,且,綜上,原命題得證.【點(diǎn)睛】本題考查集合的自己個(gè)數(shù)的研究,結(jié)合數(shù)學(xué)歸納法的應(yīng)用,屬于難題.19(1)(2)32【解析】利用絕對(duì)值不等式的解法求出不等式的解集,得到關(guān)于
16、的方程,求出的值即可;由知可得,,利用三個(gè)正數(shù)的基本不等式,構(gòu)造和是定值即可求出的最大值.【詳解】(1),所以不等式的解集為,即為不等式的解集為,的解集為,即不等式的解集為,化簡(jiǎn)可得,不等式的解集為,所以,即.(2),.又,當(dāng)且僅當(dāng),等號(hào)成立,即,時(shí),等號(hào)成立,的最大值為32.【點(diǎn)睛】本題主要考查含有兩個(gè)絕對(duì)值不等式的解法和三個(gè)正數(shù)的基本不等式的靈活運(yùn)用;其中利用構(gòu)造出和為定值即為定值是求解本題的關(guān)鍵;基本不等式取最值的條件:一正二定三相等是本題的易錯(cuò)點(diǎn);屬于中檔題.20(1);(2).【解析】(1)由,利用余弦定理可得,結(jié)合可得結(jié)果;(2)由正弦定理,, 利用三角形內(nèi)角和定理可得,由三角形面
17、積公式可得結(jié)果.【詳解】(1)由題意,得. , , .(2),由正弦定理,可得. ab,, . .【點(diǎn)睛】本題主要考查正弦定理、余弦定理及特殊角的三角函數(shù),屬于中檔題.對(duì)余弦定理一定要熟記兩種形式:(1);(2),同時(shí)還要熟練掌握運(yùn)用兩種形式的條件.另外,在解與三角形、三角函數(shù)有關(guān)的問題時(shí),還需要記住等特殊角的三角函數(shù)值,以便在解題中直接應(yīng)用.21(1)(2)證明見解析【解析】(1)根據(jù)公式得到,計(jì)算得到答案.(2),根據(jù)裂項(xiàng)求和法計(jì)算得到,得到證明.【詳解】(1)由已知得時(shí),故.故數(shù)列為等比數(shù)列,且公比.又當(dāng)時(shí),.(2).【點(diǎn)睛】本題考查了數(shù)列通項(xiàng)公式和證明數(shù)列不等式,意在考查學(xué)生對(duì)于數(shù)列公式方法的綜合應(yīng)用.22()見解析 ()存在,此時(shí)為的中點(diǎn).【解析】()證明平面,得到平面平面,故平面平面,平面,得到答案.()假設(shè)存在點(diǎn)
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 沈陽理工大學(xué)《環(huán)境設(shè)計(jì)》2023-2024學(xué)年第一學(xué)期期末試卷
- 全國(guó)統(tǒng)考2024高考?xì)v史一輪復(fù)習(xí)第九單元20世紀(jì)世界經(jīng)濟(jì)體制的創(chuàng)新與世界經(jīng)濟(jì)全球化趨勢(shì)第27講古代中國(guó)的科學(xué)技術(shù)與文學(xué)藝術(shù)課時(shí)作業(yè)含解析新人教版
- 煤礦應(yīng)急應(yīng)急救援
- 2024年合作小車客運(yùn)從業(yè)資格證考試
- 2024年畢節(jié)道路客運(yùn)從業(yè)資格證考試
- 美食廣場(chǎng)租賃管理合同附件
- 2024標(biāo)準(zhǔn)房屋租賃合同書(常用版)
- 2024二手車分期付款合同
- 衛(wèi)生部臨床檢驗(yàn)中心詳解
- 2024建筑工程鋼筋承包合同書格式
- 柱塞泵工作原理動(dòng)畫演示
- 幼兒園開展“一對(duì)一傾聽”的實(shí)踐與反思
- 空中乘務(wù)生涯發(fā)展
- 鹽田采鹽生產(chǎn)示范
- 科室院感自查報(bào)告
- 2024年中央國(guó)債登記結(jié)算有限責(zé)任公司招聘筆試參考題庫含答案解析
- 客情關(guān)系維護(hù)技巧課件
- 《小學(xué)急救知識(shí)培訓(xùn)》課件
- 4中小學(xué)毒品預(yù)防專題教育大綱
- 旅游小程序策劃方案
- 北京市東城區(qū)2023-2024學(xué)年六年級(jí)上學(xué)期期末數(shù)學(xué)試卷
評(píng)論
0/150
提交評(píng)論