版權(quán)說(shuō)明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡(jiǎn)介
1、 級(jí) 數(shù) 第一節(jié) 數(shù)項(xiàng)級(jí)數(shù)及其斂散性第二節(jié) 冪級(jí)數(shù) 第三節(jié) 傅里葉級(jí)數(shù)第1頁(yè),共103頁(yè)。一、數(shù)項(xiàng)級(jí)數(shù)及其斂散性 1數(shù)項(xiàng)級(jí)數(shù)的概念定義1 設(shè)給定一個(gè)數(shù)列 則表達(dá)式 (111) 稱為常數(shù)項(xiàng)無(wú)窮級(jí)數(shù),簡(jiǎn)稱數(shù)項(xiàng)級(jí)數(shù),記作 即 其中第n 項(xiàng) 稱為一般項(xiàng)或通項(xiàng)第一節(jié) 數(shù)項(xiàng)級(jí)數(shù)及其斂散性第2頁(yè),共103頁(yè)。例如,級(jí)數(shù) 的一般項(xiàng)為又如級(jí)數(shù)的一般項(xiàng)為 簡(jiǎn)言之,數(shù)列的和式稱為級(jí)數(shù).定義2 設(shè)級(jí)數(shù)(111)的前項(xiàng)之和為 稱Sn為級(jí)數(shù)的前項(xiàng)部分和當(dāng)依次取1,2,3,時(shí), 第3頁(yè),共103頁(yè)。新的數(shù)列 , ,數(shù)列 稱為級(jí)數(shù) 的部分和數(shù)列若此數(shù)列的極限存在,即 (常數(shù)),則S 稱為 的和,記作此時(shí)稱級(jí)數(shù) 收斂如果數(shù)列
2、沒有極限,則稱級(jí)數(shù) 發(fā)散,這時(shí)級(jí)數(shù)沒有和 第4頁(yè),共103頁(yè)。當(dāng)級(jí)數(shù)收斂時(shí),其部分和 是級(jí)數(shù)和S的近似值,稱 為級(jí)數(shù)的余項(xiàng),記作 ,即 例1 判定級(jí)數(shù) 的斂散性.解 已知級(jí)數(shù)的前n項(xiàng)和是:第5頁(yè),共103頁(yè)。因?yàn)?,所以這個(gè)級(jí)數(shù)收斂,其和為1.例2 判定級(jí)數(shù)的斂散性第6頁(yè),共103頁(yè)。解 已知級(jí)數(shù)的前n項(xiàng)和是因?yàn)?, 所以這個(gè)級(jí)數(shù)發(fā)散.例3 討論等比級(jí)數(shù)(也稱幾何級(jí)數(shù))的斂散性. 第7頁(yè),共103頁(yè)。解 (1) 前n項(xiàng)和當(dāng) 時(shí), ,所以級(jí)數(shù) 收斂,其和當(dāng) 時(shí), 所以級(jí)數(shù) 發(fā)散.(2) 當(dāng) 時(shí), 于是 第8頁(yè),共103頁(yè)。所以級(jí)數(shù) 發(fā)散. 當(dāng) 時(shí), ,其前n項(xiàng)和顯然,當(dāng)n時(shí),Sn沒有極限.所以,
3、級(jí)數(shù) 發(fā)散.綜上所述,等比級(jí)數(shù) ,當(dāng) 時(shí)收斂, 當(dāng)時(shí)發(fā)散. 第9頁(yè),共103頁(yè)。例如,級(jí)數(shù)1+2+4+8+2n-1+是公比為2的幾何級(jí)數(shù), 由于 ,所以級(jí)數(shù)是發(fā)散的級(jí)數(shù) 是公比為-1的幾何級(jí)數(shù), 由于 ,所以該級(jí)數(shù)發(fā)散.注意 幾何級(jí)數(shù) 的斂散性非常重要.無(wú)論是用比較判別法判別級(jí)數(shù)的斂散性,還是用間接法將函數(shù)展開為冪級(jí)數(shù),都經(jīng)常以幾何級(jí)數(shù)斂散性為基礎(chǔ).第10頁(yè),共103頁(yè)。例4 把循環(huán)小數(shù) 化為分?jǐn)?shù).解 把 化為無(wú)窮級(jí)數(shù)這是公比為 的幾何級(jí)數(shù),由等比數(shù)列求和公式第11頁(yè),共103頁(yè)。所以這個(gè)無(wú)窮級(jí)數(shù)的和為 ,即 2數(shù)項(xiàng)級(jí)數(shù)的基本性質(zhì) 性質(zhì)1 如果級(jí)數(shù) 收斂,其和為s, k為常數(shù),則級(jí)數(shù) 也收斂,
4、其和為ks;如果級(jí)數(shù) 發(fā)散,當(dāng)k0時(shí),級(jí)數(shù) 也發(fā)散.由此可知,級(jí)數(shù)的每一項(xiàng)同乘以不為零的常數(shù)后,其斂散性不變. . 第12頁(yè),共103頁(yè)。性質(zhì)2 若級(jí)數(shù) 與 分別收斂于與 ,則級(jí)數(shù) ,收斂于性質(zhì)3 添加、去掉或改變級(jí)數(shù)的有限項(xiàng),級(jí)數(shù)的斂散性不變.性質(zhì)4 若級(jí)數(shù) 收斂,則對(duì)其各項(xiàng)間任意加括號(hào)后所得的級(jí)數(shù)仍收斂,且其和不變.應(yīng)當(dāng)注意,性質(zhì)4的結(jié)論反過來(lái)并不成立.即如果加括號(hào)后級(jí)數(shù)收斂,原級(jí)數(shù)未必收斂. . 第13頁(yè),共103頁(yè)。例如級(jí)數(shù) (1-1)+(1-1)+(1-1)+顯然收斂于零,但級(jí)數(shù)1+1-1+1-1+卻是發(fā)散的.性質(zhì)5(兩邊夾定理) 如果 且 和 都收斂,則 也收斂 第14頁(yè),共103
5、頁(yè)。性質(zhì)6(級(jí)數(shù)收斂的必要條件) 若級(jí)數(shù) 收斂,則 例5判別級(jí)數(shù) 的斂散性解 因?yàn)樗约?jí)數(shù) 發(fā)散. 例6判別級(jí)數(shù) 的斂散性. 第15頁(yè),共103頁(yè)。解 級(jí)數(shù) 與級(jí)數(shù) 都收斂,故由性質(zhì)2知,級(jí)數(shù) 收斂.注意 性質(zhì)6可以用來(lái)判定級(jí)數(shù)發(fā)散:如果級(jí)數(shù)一般項(xiàng)不趨于零,則該級(jí)數(shù)必定發(fā)散.應(yīng)當(dāng)看到,性質(zhì)6只是級(jí)數(shù)收斂的必要條件,并不是級(jí)數(shù)收斂的充分條件,也就是說(shuō),即使 ,也不能由此判定級(jí)數(shù) 收斂.下面的例9正說(shuō)明了這一點(diǎn): ,但級(jí)數(shù) 發(fā)散. 第16頁(yè),共103頁(yè)。例7 證明調(diào)和級(jí)數(shù) 是發(fā)散級(jí)數(shù).證 調(diào)和級(jí)數(shù)部分和 如圖,考察曲線 第17頁(yè),共103頁(yè)。 ,所圍成的曲邊梯形的面 積S與陰影表示的階梯形面積An
6、之間的關(guān)系. 所以,陰影部分的總面積為它顯然大于曲邊梯形的面積S,即有第18頁(yè),共103頁(yè)。而 ,表明A的極限不存在,所以該級(jí)數(shù)發(fā)散.第19頁(yè),共103頁(yè)。二、正項(xiàng)級(jí)數(shù)及其斂散性如果 0(n=1,2,3),則稱級(jí)數(shù) 為正項(xiàng)級(jí)數(shù) 定理1 正項(xiàng)級(jí)數(shù)收斂的充分必要條件是它的部分和數(shù)列有界.例1 證明正項(xiàng)級(jí)數(shù) 是收斂的證 因?yàn)橛谑菍?duì)任意的有 第20頁(yè),共103頁(yè)。即正項(xiàng)級(jí)數(shù)的部分和數(shù)列有界,故級(jí)數(shù) 收斂.定理2(比較判別法) 設(shè) 和 是兩個(gè)正項(xiàng)級(jí)數(shù),且 (1)若級(jí)數(shù) 收斂,則級(jí)數(shù) 也收斂; (2)若級(jí)數(shù) 發(fā)散,則級(jí)數(shù) 也發(fā)散. 第21頁(yè),共103頁(yè)。例2 討論 級(jí)數(shù) ( )的斂散性 解 當(dāng) 時(shí), ,因
7、為 發(fā)散,所以由比較判別法知,當(dāng) 時(shí),發(fā)散.當(dāng) 時(shí),順次把 級(jí)數(shù)的第1項(xiàng),第2項(xiàng)到第3項(xiàng),4到7項(xiàng),8到15項(xiàng),加括號(hào)后得它的各項(xiàng)顯然小于級(jí)數(shù) 第22頁(yè),共103頁(yè)。對(duì)應(yīng)的各項(xiàng),而所得級(jí)數(shù)是等比級(jí)數(shù),其公比為 ,故收斂,于是當(dāng) 時(shí),級(jí)數(shù) 收斂.綜上所述, 級(jí)數(shù) 當(dāng) 時(shí)發(fā)散,當(dāng) 時(shí)收斂.注意 級(jí)數(shù)在判斷正項(xiàng)級(jí)數(shù)的斂散性方面經(jīng)常用到,因此有關(guān) 級(jí)數(shù)斂散性的結(jié)論必須牢記. 第23頁(yè),共103頁(yè)。 例3判定級(jí)數(shù) 的斂散性. 解 因?yàn)榧?jí)數(shù)的一般項(xiàng) 滿足而級(jí)數(shù)是p2的 級(jí)數(shù),它是收斂的,所以原級(jí)數(shù)也是收斂的.第24頁(yè),共103頁(yè)。例4 判別級(jí)數(shù) 的斂散性.解 因?yàn)?而 是由調(diào)和級(jí)數(shù)去掉前兩項(xiàng)后所得的級(jí)數(shù),
8、它是發(fā)散的,所以由比較判別法知級(jí)數(shù) 發(fā)散. 第25頁(yè),共103頁(yè)。重要參照級(jí)數(shù):等比級(jí)數(shù), p-級(jí)數(shù)。定理3 比較判別法的極限形式:注:須有參照級(jí)數(shù). 比較審斂法的不方便第26頁(yè),共103頁(yè)。解發(fā)散.故原級(jí)數(shù)收斂.第27頁(yè),共103頁(yè)。定理4(達(dá)朗貝爾比值判別法) 設(shè) 是一個(gè)正項(xiàng)級(jí)數(shù),并且 ,則 (1)當(dāng) 時(shí),級(jí)數(shù)收斂; (2)當(dāng) 時(shí),級(jí)數(shù)發(fā)散; (3)當(dāng) 時(shí),級(jí)數(shù)可能收斂,也可能發(fā)散.例6 判別下列級(jí)數(shù)的斂散性 (1) ; (2) 第28頁(yè),共103頁(yè)。 解 (1) 所以級(jí)數(shù) 發(fā)散; (2)所以級(jí)數(shù) 收斂. 第29頁(yè),共103頁(yè)。解解第30頁(yè),共103頁(yè)。定理6(根值判別法,柯西判別法)設(shè)
9、為正項(xiàng)級(jí)數(shù),且(1)當(dāng) 時(shí),級(jí)數(shù)收斂;(2)當(dāng) 時(shí),級(jí)數(shù)發(fā)散;(3)當(dāng) 時(shí)級(jí)數(shù)可能收斂也可能 發(fā)散第31頁(yè),共103頁(yè)。注意:第32頁(yè),共103頁(yè)。解解比值審斂法失效.根值審斂法也一定失效.改用比較審斂法第33頁(yè),共103頁(yè)。要判別一個(gè)正項(xiàng)級(jí)數(shù)是否收斂,通常按下列步驟進(jìn)行:(1)用級(jí)數(shù)收斂的必要條件如果 ,則級(jí)數(shù)發(fā)散,否則需進(jìn)一步判斷. (2)用比值判別法 如果 ,即比值判別法失效,則改用比較判別法.(3)用比較判別法用比較判別法必須掌握一些斂散性已知的級(jí)數(shù),以便與要判定的級(jí)數(shù)進(jìn)行比較,經(jīng)常用來(lái)作為比較的級(jí)數(shù)有等比級(jí)數(shù), 級(jí)數(shù)等. 第34頁(yè),共103頁(yè)。三、交錯(cuò)級(jí)數(shù)及其斂散性級(jí)數(shù) 稱為交錯(cuò)級(jí)數(shù)
10、.定理4(萊布尼茲判別法) 如果交錯(cuò)級(jí)數(shù) 滿足萊布尼茲(Leibniz)條件: (1) (2) 則級(jí)數(shù) 收斂,其和 S ,其余項(xiàng) 第35頁(yè),共103頁(yè)。例6 判定交錯(cuò)級(jí)數(shù) 的斂散性.解 此交錯(cuò)級(jí)數(shù) ,滿足: (1) ; (2) 由萊布尼茲判別法知級(jí)數(shù)收斂.四、絕對(duì)收斂與條件收斂 定義3 對(duì)于任意項(xiàng)級(jí)數(shù) ,若 收斂,則稱 是絕對(duì)收斂的;若 收斂,而 發(fā)散,則稱 是條件收斂的.第36頁(yè),共103頁(yè)。定理5 絕對(duì)收斂的級(jí)數(shù)必是收斂的.事實(shí)上,如果 收斂, 由于 故從性質(zhì)1及性質(zhì)5知 也是收斂的. 例7 判定級(jí)數(shù) 的斂散性.解 因?yàn)?, 而級(jí)數(shù) 收斂,故由比較判別法可知級(jí)數(shù) 收斂,從而原級(jí)數(shù) 絕對(duì)收斂
11、.第37頁(yè),共103頁(yè)。例8 判別級(jí)數(shù) 的斂散性,說(shuō)明是否絕對(duì)收斂. 解 因?yàn)?故由比值判別法可知級(jí)數(shù) 收斂,所以原級(jí)數(shù) 絕對(duì)收斂.第38頁(yè),共103頁(yè)。例9 判別級(jí)數(shù) 是否絕對(duì)收斂. 解 因?yàn)?故由比值判別法可知級(jí)數(shù) 發(fā)散,從而原級(jí)數(shù) 不是絕對(duì)收斂. 第39頁(yè),共103頁(yè)。例10 證明級(jí)數(shù) 條件收斂. 證 由萊布尼茲判別法知級(jí)數(shù) 收斂,而 為調(diào)和級(jí)數(shù),它是發(fā)散的,故所給級(jí)數(shù)條件收斂.第40頁(yè),共103頁(yè)。 第二節(jié) 冪級(jí)數(shù) 一、冪級(jí)數(shù)的概念1.函數(shù)項(xiàng)級(jí)數(shù)如果級(jí)數(shù) ( 11.2) 的各項(xiàng)都是定義在某個(gè)區(qū)間I上的函數(shù),則稱該級(jí)數(shù)(2.2)為函數(shù)項(xiàng)級(jí)數(shù),un(x)稱為一般項(xiàng)或通項(xiàng).當(dāng)x在I中取某個(gè)特
12、定值 時(shí),函數(shù)項(xiàng)級(jí)數(shù)( 2.2)就是一個(gè)常數(shù)項(xiàng)級(jí)數(shù).如果這個(gè)級(jí)數(shù)收斂,則稱點(diǎn) 為這個(gè)級(jí)數(shù)的一個(gè)收斂點(diǎn)。若發(fā)散,則稱點(diǎn) 為這個(gè)級(jí)數(shù)的發(fā)散點(diǎn).一個(gè)函數(shù)項(xiàng)級(jí)數(shù)的收斂點(diǎn)的全體稱為它的收斂域. 對(duì)于收斂域內(nèi)的任意一個(gè)數(shù)x,函數(shù)項(xiàng)級(jí)數(shù)成為一個(gè)收斂的常數(shù)項(xiàng)級(jí) 數(shù),因此有一個(gè)確定的和 S,在收斂域內(nèi),函數(shù)項(xiàng)級(jí)數(shù)的和是 x 的函數(shù) 第41頁(yè),共103頁(yè)。S(x),通常稱S(x)為函數(shù)項(xiàng)級(jí)數(shù)的和函數(shù),即 其中 x 是收斂域內(nèi)的任一點(diǎn).將函數(shù)項(xiàng)級(jí)數(shù)的前項(xiàng)和記作 ,則在收斂域上有 2.冪級(jí)數(shù)的概念 形如 (11.3)第42頁(yè),共103頁(yè)。的函數(shù)項(xiàng)級(jí)數(shù),稱為 的冪級(jí)數(shù),其中常數(shù) 稱為冪級(jí)數(shù)的系數(shù). 當(dāng) 0時(shí),(11.3
13、)冪級(jí)數(shù)變?yōu)?(11.4)稱為 x 的冪級(jí)數(shù). (1)冪級(jí)數(shù)的收斂半徑 x 的冪級(jí)數(shù)各項(xiàng)取絕對(duì)值,則得到正項(xiàng)級(jí)數(shù)第43頁(yè),共103頁(yè)。由比值判斂法其中 當(dāng) 時(shí),若 ,即 ,則級(jí)數(shù)(11.4)收斂,若 即 ,則級(jí)數(shù)(11.4)發(fā)散.這個(gè)結(jié)果表明,只要 就會(huì)有一個(gè)對(duì)稱開區(qū)間(-,),在這個(gè)區(qū)間內(nèi)冪級(jí)數(shù)絕對(duì)收斂,在這個(gè)區(qū)間外冪 第44頁(yè),共103頁(yè)。級(jí)數(shù)發(fā)散,當(dāng) x =R 時(shí),級(jí)數(shù)可能收斂也可能發(fā)散.稱 為冪級(jí)數(shù)(11.4)的收斂半徑.當(dāng) 時(shí), ,則級(jí)數(shù)(11.4)對(duì)一切實(shí)數(shù) x都絕對(duì)收斂,這時(shí)收斂半徑 . 如果冪級(jí)數(shù)僅在 x0一點(diǎn)處收斂,則收斂半徑R0. 定理1 如果x的冪級(jí)數(shù)(11.4)的系數(shù)滿
14、足 則 (1)當(dāng) 時(shí), 第45頁(yè),共103頁(yè)。 (2)當(dāng) 時(shí), (3)當(dāng) 時(shí), (2)冪級(jí)數(shù)的收斂區(qū)間 若冪級(jí)數(shù)(11.4)的收斂半徑為 R,則(-R,R)稱為該級(jí)數(shù)的收斂區(qū)間,冪級(jí)數(shù)在收斂區(qū)間內(nèi)絕對(duì)收斂,把收斂區(qū)間的端點(diǎn)xR 代入級(jí)數(shù)中,判定數(shù)項(xiàng)級(jí)數(shù)的斂散性后,就可得到冪級(jí)數(shù)的收斂域.第46頁(yè),共103頁(yè)。例1求下列冪級(jí)數(shù)的收斂半徑及收斂域 (1) (2) (3)解 (1) 因?yàn)?所以冪級(jí)數(shù)的收斂半徑 .所以該級(jí)數(shù)的收斂域?yàn)椋?,+);第47頁(yè),共103頁(yè)。 (2)因?yàn)?所以所給冪級(jí)數(shù)的收斂半徑R=1.因此該級(jí)數(shù)的收斂區(qū)間為(-1,1)當(dāng)x1時(shí),級(jí)數(shù)為調(diào)和級(jí)數(shù),發(fā)散 ;當(dāng)x=-1時(shí),級(jí)數(shù)為交
15、錯(cuò)級(jí)數(shù),收斂 故該級(jí)數(shù)的收斂域?yàn)?-1,1) . 第48頁(yè),共103頁(yè)。(3) 因?yàn)樗运o冪級(jí)數(shù)的收斂半徑 .因此沒有收斂區(qū)間,收斂域?yàn)?,即只在 處收斂.第49頁(yè),共103頁(yè)。例2 求冪級(jí)數(shù) 的收斂半徑解 所給級(jí)數(shù)缺少偶次方項(xiàng),根據(jù)比值法求收斂半徑 當(dāng) ,即 時(shí),所給級(jí)數(shù)絕對(duì)收斂;當(dāng),即 時(shí),所給級(jí)數(shù)發(fā)散. 因此,所給級(jí)數(shù)的收斂半徑 .第50頁(yè),共103頁(yè)。二、冪級(jí)數(shù)的性質(zhì)性質(zhì)1 冪級(jí)數(shù)的和函數(shù)在收斂區(qū)間內(nèi)連續(xù),即若 ,x(-R,R)則 在收斂區(qū)間內(nèi)連續(xù). 性質(zhì)2 設(shè) 記 ,則在(-R,R)內(nèi)有如下運(yùn)算法則: (1)加(減)法運(yùn)算 第51頁(yè),共103頁(yè)。(2)乘法運(yùn)算 性質(zhì)3(微分運(yùn)算)
16、設(shè) ,收斂半徑為 R ,則在 (-R , R)內(nèi)這個(gè)級(jí)數(shù)可以逐項(xiàng)求導(dǎo),即且收斂半徑仍為 R . 第52頁(yè),共103頁(yè)。性質(zhì)4(積分運(yùn)算)設(shè) ,收斂半徑為 R ,則在(-R ,R)內(nèi)這個(gè)級(jí)數(shù)可以逐項(xiàng)積分,即且收斂半徑仍為.例3 已知 ,利用逐項(xiàng)積分的性質(zhì),可以得到 第53頁(yè),共103頁(yè)。當(dāng) x = -1 時(shí), 收斂; 當(dāng) x = 1 時(shí), 發(fā)散.故收斂域?yàn)?1,1) ,即第54頁(yè),共103頁(yè)。例4 求 的和函數(shù) 解 設(shè) 兩端求導(dǎo)得 兩端積分得即 第55頁(yè),共103頁(yè)。 當(dāng) x = -1時(shí), 收斂; 當(dāng) x = 1時(shí), 收斂, 所以 第56頁(yè),共103頁(yè)。三、將函數(shù)展開成冪級(jí)數(shù) 1泰勒公式與麥克勞
17、林公式(1) 泰勒公式定理2(泰勒中值定理) 如果函數(shù) f(x) 在x0 的某鄰域內(nèi)有直至 n+1階導(dǎo)數(shù),則對(duì)此鄰域內(nèi)任意點(diǎn)x,有 的 n 階泰勒公式 第57頁(yè),共103頁(yè)。成立,其中 為階泰勒公式的余項(xiàng),當(dāng) 時(shí),它是比 高階的無(wú)窮小,余項(xiàng) 的拉格朗日型表達(dá)式為 (2) 麥克勞林公式在泰勒公式中當(dāng)時(shí),則有麥克勞林公式第58頁(yè),共103頁(yè)。其中, 2、泰勒級(jí)數(shù)與麥克勞林級(jí)數(shù)設(shè) f(x)在所討論的鄰域內(nèi)具有任意階導(dǎo)數(shù) 稱級(jí)數(shù)第59頁(yè),共103頁(yè)。為 在 處的泰勒級(jí)數(shù),其系數(shù) 稱為 在 處的泰勒系數(shù).其前 n+1項(xiàng)和 由泰勒公式得:第60頁(yè),共103頁(yè)。因此當(dāng) 時(shí),必有 即泰勒級(jí)數(shù)收斂,其和函數(shù)為
18、.反之,如果級(jí)數(shù)收斂于 于是得到下面的定理. 第61頁(yè),共103頁(yè)。 定理3 如果在 的某個(gè)鄰域內(nèi),函數(shù) 具有任意階導(dǎo)數(shù),則函數(shù) 的泰勒級(jí)數(shù)(11.6)收斂于 的充分必要條件是: 當(dāng) 時(shí)泰勒余項(xiàng) 如果 在 處的泰勒級(jí)數(shù)收斂于 ,就說(shuō) 在 處可展開稱泰勒級(jí)數(shù),則(11.6)式為 在 處的泰勒展開式,也稱 關(guān)于 的 冪級(jí)數(shù),也記為 第62頁(yè),共103頁(yè)。當(dāng) 時(shí),(11.6)式成為稱為函數(shù) f (x) 的麥克勞林展開式,也記為第63頁(yè),共103頁(yè)。3、將函數(shù)展開成冪級(jí)數(shù)的方法 (1)直接展開法 把 f (x)展開成的冪級(jí)數(shù),可按下列步驟進(jìn)行:求出f (x) 的各階導(dǎo)數(shù) 計(jì)算f (x) 及其各階導(dǎo)數(shù)在
19、x0處的值, 第64頁(yè),共103頁(yè)。 寫出冪級(jí)數(shù) 并求出它的收斂區(qū)間;考察當(dāng)x在收斂區(qū)間內(nèi)時(shí),余項(xiàng) 的極限是否為零,如果為零,則由上式所求得的冪級(jí)數(shù)就是f (x) 的冪級(jí)數(shù)的展開式. 第65頁(yè),共103頁(yè)。 例1 將函數(shù) 展開成 x 的冪級(jí)數(shù) 解 因?yàn)?n=1,2,3,所以, n =1,2,3, 又, f (0)=1因此得級(jí)數(shù) ,它的收斂區(qū)間為 . 對(duì)于任何實(shí)數(shù) x,有 第66頁(yè),共103頁(yè)。因 是收斂級(jí)數(shù) 的通項(xiàng),所以 而 是有限正實(shí)數(shù),因此 即 ,因此從而得到 的冪級(jí)數(shù)展開式 第67頁(yè),共103頁(yè)。例2 將函數(shù) 展開成x的冪級(jí)數(shù) 解 因?yàn)?,n1,2,3 而f(n)(0)順次循環(huán)取四個(gè)數(shù)1
20、,0,-1,0,所以得級(jí)數(shù)對(duì)于任何有限實(shí)數(shù),第68頁(yè),共103頁(yè)。于是得的冪級(jí)數(shù)展開式類似地,還可以得到下述函數(shù)的冪級(jí)數(shù)展開式: (-1,1)第69頁(yè),共103頁(yè)。當(dāng)m為實(shí)數(shù)時(shí), 它的收斂半徑R=1,在 處展開式是否成立,要根據(jù)m的數(shù)值,看右端級(jí)數(shù)是否收斂而定.例如 當(dāng)m =-1時(shí) (-1,1)第70頁(yè),共103頁(yè)。(2)間接展開法 間接展開法是指從已知函數(shù)的展開式出發(fā),利用冪級(jí)數(shù)的運(yùn)算規(guī)則得到所求函數(shù)的展開式的方法. 例3 將函數(shù) 展開成x的冪級(jí)數(shù) 解 已知 (-,+) 第71頁(yè),共103頁(yè)。而 利用逐項(xiàng)求導(dǎo)公式,得到 (-,+)第72頁(yè),共103頁(yè)。 例4 將函數(shù) 展開成x 的冪級(jí)數(shù) 解
21、已知 (-1,1)將上式從0到 x 逐項(xiàng)積分,得到 第73頁(yè),共103頁(yè)。這個(gè)級(jí)數(shù)的收斂半徑R=1當(dāng)x1時(shí),右端級(jí)數(shù)成為這個(gè)級(jí)數(shù)是收斂級(jí)數(shù).當(dāng)x-1時(shí),右端級(jí)數(shù)成為 這個(gè)級(jí)數(shù)是發(fā)散級(jí)數(shù).因此 第74頁(yè),共103頁(yè)。四、冪級(jí)數(shù)的應(yīng)用 1.函數(shù)值的近似計(jì)算例5 計(jì)算的 e 近似值解:e 的值就是函數(shù)e 的展開式在x=1時(shí)的函數(shù)值,即 e取e則誤差第75頁(yè),共103頁(yè)。第76頁(yè),共103頁(yè)。故若要求精確到 ,則只需 即 即可.例如要精確到 ,由于 ,所以取 即e 讀者可以在計(jì)算機(jī)上求此值 (e ). 例6 制作四位正余弦函數(shù)表 解 由于 只需制作 的正余弦表就行了. 第77頁(yè),共103頁(yè)。 我們使用
22、正余弦的展開式.注意這兩個(gè)級(jí)數(shù)都是滿足萊布尼茨條件的交錯(cuò)級(jí)數(shù),去掉前若干項(xiàng)之后剩余項(xiàng)仍為滿足萊布尼茨條件的交錯(cuò)級(jí)數(shù).由萊布尼茨判定定理就可知,若取這兩個(gè)級(jí)數(shù)的前若干項(xiàng)作為近似時(shí),誤差不超過所棄項(xiàng)中的第一項(xiàng).因?yàn)樗砸?的四位正余弦表只需要取到至多 項(xiàng),即取 作表時(shí)須注意x以弧度為單位. 第78頁(yè),共103頁(yè)。2.求極限 例7 求 解 把 cosx 和 的冪級(jí)數(shù)展開式代入上式,有第79頁(yè),共103頁(yè)。 第三節(jié) 傅里葉級(jí)數(shù) 在本節(jié)中,將討論另一類重要的、應(yīng)用廣泛的函數(shù)項(xiàng)級(jí)數(shù)三角級(jí)數(shù). 三角級(jí)數(shù)也稱為傅里葉(Fourier)級(jí)數(shù).所謂三角級(jí)數(shù),就是除常數(shù)項(xiàng)外,各項(xiàng)都是正弦函數(shù)和余弦函數(shù)的級(jí)數(shù),它的
23、一般形式為 (1)其中 都是常數(shù),稱為系數(shù).特別當(dāng) 時(shí),級(jí)數(shù)只含正弦項(xiàng),稱為正弦級(jí)數(shù).當(dāng) 時(shí), 級(jí)數(shù)只含常數(shù)項(xiàng)和 第80頁(yè),共103頁(yè)。余弦項(xiàng),稱為余弦級(jí)數(shù).對(duì)于三角級(jí)數(shù),我們主要討論它的收斂性以及如何把一個(gè)函數(shù)展開為三角級(jí)數(shù)的問題.一、以 為周期的函數(shù)展開為傅里葉級(jí)數(shù) 由于正弦函數(shù)和余弦函數(shù)都是周期函數(shù),顯然周期函數(shù)更適合于展開成三角級(jí)數(shù).設(shè) f (x)是以 為周期的函數(shù),所謂的傅里葉(Fourier)級(jí)數(shù)展開就是尋找一個(gè)三角級(jí)數(shù)第81頁(yè),共103頁(yè)。使得該級(jí)數(shù)以 f (x)為和函數(shù),即 f (x)=先解決這樣的問題:如果以 為周期的函數(shù)可表為式(1)所示的三角級(jí)數(shù),那么如何確定 和 .為了
24、求出這些系數(shù),先介紹下列內(nèi)容.1三角函數(shù)系的正交性在三角級(jí)數(shù)(1)中出現(xiàn)的函數(shù) (2) 第82頁(yè),共103頁(yè)。構(gòu)成了一個(gè)三角函數(shù)系,這個(gè)三角函數(shù)系有一個(gè)重要的性質(zhì),就是定理1(三角函數(shù)系的正交性)三角函數(shù)系(2)中任意兩個(gè)不同函數(shù)的乘積在 上的積分等于0,具體的說(shuō)就是有第83頁(yè),共103頁(yè)。這個(gè)定理的證明很容易,只要把這五個(gè)積分實(shí)際求出來(lái)即.2. f (x) 的傅里葉級(jí)數(shù)為了求(1)式中的系數(shù),利用三角函數(shù)系的正交性,假設(shè)(1)式是可逐項(xiàng)積分的,把它從 到 逐項(xiàng)積分: 由定理1,右端除第一項(xiàng)外均為0,所以第84頁(yè),共103頁(yè)。于是得 為求 ,先用 乘以(11.7)式兩端,再?gòu)?到 逐項(xiàng)積分,得
25、由定理1,右端除 k=n 的一項(xiàng)外均為 0,所以于是得 第85頁(yè),共103頁(yè)。類似地,用 sinnx乘以(11.7)式兩端,再?gòu)?到 逐項(xiàng)積分,可得用這種辦法求得的系數(shù)成為 f (x)的傅里葉系數(shù). 綜上所述,我們有定 定理2 求f (x)的傅里葉系數(shù)的公式是 (3)第86頁(yè),共103頁(yè)。由 f (x) 的傅里葉系數(shù)所確定的三角級(jí)數(shù) 成為f (x) 的傅里葉級(jí)數(shù). 顯然,當(dāng)f (x)為奇函數(shù)時(shí),公式(3)中的 ,當(dāng)為偶函數(shù)時(shí),公式(3)中的 所以有推論 當(dāng)f (x)是周期為 的奇函數(shù)時(shí),它的傅里葉級(jí)數(shù)為正弦級(jí)數(shù) 其中系數(shù) 第87頁(yè),共103頁(yè)。 當(dāng) f (x) 是周期為 的偶函數(shù)時(shí),它的傅里葉
26、級(jí)數(shù)為余弦級(jí)數(shù) 其中系數(shù) 3. 傅里葉級(jí)數(shù)的收斂性上述 定理3(收斂定理)設(shè) 以 為周期的函數(shù)f (x)在 上滿足狄利克雷(Dirichlet)條件:(1)沒有斷點(diǎn)或僅有有限個(gè)第一類間斷點(diǎn);(2)至多只有有限個(gè)極值點(diǎn),則 f (x)的傅里葉級(jí)數(shù)收斂,且有:第88頁(yè),共103頁(yè)。(1)當(dāng)x是的連續(xù)點(diǎn)時(shí),級(jí)數(shù)收斂于f (x);(2)當(dāng)x是的間斷點(diǎn)時(shí),級(jí)數(shù)收斂于這一點(diǎn)左右極限的算術(shù)平值 例1 正弦交流I(x)=sinx電經(jīng)二極管整流后(圖 11-2)變?yōu)?為整數(shù), 把 f (x)展開為傅里葉級(jí)數(shù).第89頁(yè),共103頁(yè)。 圖 11-2解 由收斂定理可知,f (x) 的傅里葉級(jí)數(shù)處處收斂于f (x).第
27、90頁(yè),共103頁(yè)。計(jì)算傅里葉系數(shù): 所以,f (x)的傅里葉展開式為 (- x +.第91頁(yè),共103頁(yè)。例2 一矩形波的表達(dá)式為求 f (x) 的傅里葉展開式. 解 由收斂定理知,當(dāng) 時(shí),的傅里葉級(jí)數(shù)收斂于 f (x) .當(dāng) 時(shí),級(jí)數(shù)收斂于 又因?yàn)?f (x) 奇函數(shù),由定理2的推論可知展開式必為正弦級(jí)數(shù),只需按推論的公式求 即可.第92頁(yè),共103頁(yè)。所以,的傅里葉展開式為第93頁(yè),共103頁(yè)。4. 或 上的函數(shù)展開成傅里葉級(jí)數(shù)求 f (x) 的傅里葉系數(shù)只用到 f (x) 在 上的部分,即 f (x) 只在 上有定義或雖在 外也有定義,但不是周期函數(shù),仍可用公式(11.9)求 f (x)的傅里葉系數(shù),而且如果f (x) 在 上滿足收斂定理?xiàng)l件,則 f (x) 至少在 內(nèi)的連續(xù)點(diǎn)上傅里葉級(jí)數(shù)是收斂于f (x) 的,而在 處,級(jí)數(shù)收斂于 第94頁(yè),共103頁(yè)。類似地,如果 f (x) 只在 上有定義且滿足
溫馨提示
- 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 成人奶粉行業(yè)相關(guān)投資計(jì)劃提議
- 財(cái)務(wù)報(bào)表分析解讀培訓(xùn)計(jì)劃
- 工業(yè)淀粉行業(yè)相關(guān)投資計(jì)劃提議范本
- 井下多功能測(cè)振儀相關(guān)行業(yè)投資規(guī)劃報(bào)告范本
- 營(yíng)銷策略優(yōu)化的總結(jié)與反思計(jì)劃
- 高中生物選修課程設(shè)置計(jì)劃
- 如何制定合理的預(yù)算實(shí)施計(jì)劃
- 慢性腎臟病合并非瓣膜性心房顫動(dòng)患者抗凝管理的專家共識(shí)(2023)解讀
- 常見護(hù)理安全問題及策略
- 生產(chǎn)流程培訓(xùn)課件熱穿孔
- 電子課件機(jī)械基礎(chǔ)(第六版)完全版
- 消防維保方案 (詳細(xì)完整版)
- 臨沂十二五城市規(guī)劃研究專題課件
- 2022更新國(guó)家開放大學(xué)電大《計(jì)算機(jī)應(yīng)用基礎(chǔ)本》終結(jié)性考試試題答案格式已排好任務(wù)一
- DB64∕T 001-2009 梯田建設(shè)技術(shù)規(guī)范
- DB62∕T 4128-2020 公路工程竣工文件材料立卷歸檔規(guī)程
- 五年級(jí)道德與法治上冊(cè)部編版第10課《傳統(tǒng)美德源遠(yuǎn)流長(zhǎng)》課件(第2課時(shí))
- 中醫(yī)婦科學(xué).病案
- 學(xué)校青少年科技創(chuàng)新工作中存在的問題
- 人教版牛頓第三定律優(yōu)秀教學(xué)課件
- NCNDA-IMFPA中英文對(duì)照電子版本
評(píng)論
0/150
提交評(píng)論