東北三省三校哈2023年高考臨考沖刺數(shù)學試卷含解析_第1頁
東北三省三校哈2023年高考臨考沖刺數(shù)學試卷含解析_第2頁
東北三省三校哈2023年高考臨考沖刺數(shù)學試卷含解析_第3頁
東北三省三校哈2023年高考臨考沖刺數(shù)學試卷含解析_第4頁
東北三省三校哈2023年高考臨考沖刺數(shù)學試卷含解析_第5頁
已閱讀5頁,還剩16頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)

文檔簡介

1、2023年高考數(shù)學模擬試卷考生請注意:1答題前請將考場、試室號、座位號、考生號、姓名寫在試卷密封線內(nèi),不得在試卷上作任何標記。2第一部分選擇題每小題選出答案后,需將答案寫在試卷指定的括號內(nèi),第二部分非選擇題答案寫在試卷題目指定的位置上。3考生必須保證答題卡的整潔??荚嚱Y(jié)束后,請將本試卷和答題卡一并交回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1在三棱錐中,且分別是棱,的中點,下面四個結(jié)論:;平面;三棱錐的體積的最大值為;與一定不垂直.其中所有正確命題的序號是( )ABCD2已知,則下列不等式正確的是( )ABCD3設(shè)分別為雙曲線的左

2、、右焦點,過點作圓的切線,與雙曲線的左、右兩支分別交于點,若,則雙曲線漸近線的斜率為( )ABCD4已知是空間中兩個不同的平面,是空間中兩條不同的直線,則下列說法正確的是( )A若,且,則B若,且,則C若,且,則D若,且,則5設(shè)非零向量,滿足,且與的夾角為,則“”是“”的( )A充分非必要條件B必要非充分條件C充分必要條件D既不充分也不必要條件6已知復(fù)數(shù)滿足:(為虛數(shù)單位),則( )ABCD7已知點為雙曲線的右焦點,直線與雙曲線交于A,B兩點,若,則的面積為( )ABCD8已知等差數(shù)列中,則( )A20B18C16D149設(shè)F為雙曲線C:(a0,b0)的右焦點,O為坐標原點,以O(shè)F為直徑的圓與

3、圓x2+y2=a2交于P、Q兩點若|PQ|=|OF|,則C的離心率為ABC2D10在空間直角坐標系中,四面體各頂點坐標分別為:假設(shè)螞蟻窩在點,一只螞蟻從點出發(fā),需要在,上分別任意選擇一點留下信息,然后再返回點那么完成這個工作所需要走的最短路徑長度是( )ABCD11過拋物線的焦點的直線交該拋物線于,兩點,為坐標原點.若,則直線的斜率為( )ABCD12若函數(shù)的圖象向右平移個單位長度得到函數(shù)的圖象,若函數(shù)在區(qū)間上單調(diào)遞增,則的最大值為( )ABCD二、填空題:本題共4小題,每小題5分,共20分。13已知拋物線C:y2=4x的焦點為F,準線為l,P為C上一點,PQ垂直l于點Q,M,N分別為PQ,P

4、F的中點,MN與x軸相交于點R,若NRF=60,則|FR|等于_.14已知拋物線的焦點為,直線與拋物線相切于點,是上一點(不與重合),若以線段為直徑的圓恰好經(jīng)過,則點到拋物線頂點的距離的最小值是_.15在直角坐標系中,直線的參數(shù)方程為(為參數(shù)),曲線的參數(shù)方程為(為參數(shù)).(1)求直線和曲線的普通方程;(2)設(shè)為曲線上的動點,求點到直線距離的最小值及此時點的坐標.16的展開式中,若的奇數(shù)次冪的項的系數(shù)之和為32,則_三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17(12分)每年的寒冷天氣都會帶熱“御寒經(jīng)濟”,以交通業(yè)為例,當天氣太冷時,不少人都會選擇利用手機上的打車軟件在網(wǎng)上

5、預(yù)約出租車出行,出租車公司的訂單數(shù)就會增加.下表是某出租車公司從出租車的訂單數(shù)據(jù)中抽取的5天的日平均氣溫(單位:)與網(wǎng)上預(yù)約出租車訂單數(shù)(單位:份);日平均氣溫()642網(wǎng)上預(yù)約訂單數(shù)100135150185210(1)經(jīng)數(shù)據(jù)分析,一天內(nèi)平均氣溫與該出租車公司網(wǎng)約訂單數(shù)(份)成線性相關(guān)關(guān)系,試建立關(guān)于的回歸方程,并預(yù)測日平均氣溫為時,該出租車公司的網(wǎng)約訂單數(shù);(2)天氣預(yù)報未來5天有3天日平均氣溫不高于,若把這5天的預(yù)測數(shù)據(jù)當成真實的數(shù)據(jù),根據(jù)表格數(shù)據(jù),則從這5天中任意選取2天,求恰有1天網(wǎng)約訂單數(shù)不低于210份的概率.附:回歸直線的斜率和截距的最小二乘法估計分別為:18(12分)已知點是拋物

6、線的頂點,是上的兩個動點,且.(1)判斷點是否在直線上?說明理由;(2)設(shè)點是的外接圓的圓心,點到軸的距離為,點,求的最大值.19(12分)在直角坐標系x0y中,把曲線為參數(shù))上每個點的橫坐標變?yōu)樵瓉淼谋?,縱坐標不變,得到曲線以坐標原點為極點,以x軸正半軸為極軸,建立極坐標系,曲線的極坐標方程(1)寫出的普通方程和的直角坐標方程;(2)設(shè)點M在上,點N在上,求|MN|的最小值以及此時M的直角坐標.20(12分)在三棱錐中,是邊長為的正三角形,平面平面,M、N分別為、的中點.(1)證明:;(2)求三棱錐的體積.21(12分)已知,(其中).(1)求;(2)求證:當時,22(10分)已知中心在原點

7、的橢圓的左焦點為,與軸正半軸交點為,且.(1)求橢圓的標準方程;(2)過點作斜率為、的兩條直線分別交于異于點的兩點、.證明:當時,直線過定點.參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1D【解析】通過證明平面,證得;通過證明,證得平面;求得三棱錐體積的最大值,由此判斷的正確性;利用反證法證得與一定不垂直.【詳解】設(shè)的中點為,連接,則,又,所以平面,所以,故正確;因為,所以平面,故正確;當平面與平面垂直時,最大,最大值為,故錯誤;若與垂直,又因為,所以平面,所以,又,所以平面,所以,因為,所以顯然與不可能垂直,故正確.故選:D【

8、點睛】本小題主要考查空間線線垂直、線面平行、幾何體體積有關(guān)命題真假性的判斷,考查空間想象能力和邏輯推理能力,屬于中檔題.2D【解析】利用特殊值代入法,作差法,排除不符合條件的選項,得到符合條件的選項【詳解】已知,賦值法討論的情況:(1)當時,令,則,排除B、C選項;(2)當時,令,則,排除A選項.故選:D.【點睛】比較大小通常采用作差法,本題主要考查不等式與不等關(guān)系,不等式的基本性質(zhì),利用特殊值代入法,排除不符合條件的選項,得到符合條件的選項,是一種簡單有效的方法,屬于中等題3C【解析】如圖所示:切點為,連接,作軸于,計算,根據(jù)勾股定理計算得到答案.【詳解】如圖所示:切點為,連接,作軸于,故,

9、在中,故,故,根據(jù)勾股定理:,解得.故選:.【點睛】本題考查了雙曲線的漸近線斜率,意在考查學生的計算能力和綜合應(yīng)用能力.4D【解析】利用線面平行和垂直的判定定理和性質(zhì)定理,對選項做出判斷,舉出反例排除.【詳解】解:對于,當,且,則與的位置關(guān)系不定,故錯;對于,當時,不能判定,故錯;對于,若,且,則與的位置關(guān)系不定,故錯;對于,由可得,又,則故正確故選:【點睛】本題考查空間線面位置關(guān)系.判斷線面位置位置關(guān)系利用好線面平行和垂直的判定定理和性質(zhì)定理. 一般可借助正方體模型,以正方體為主線直觀感知并準確判斷5C【解析】利用數(shù)量積的定義可得,即可判斷出結(jié)論【詳解】解:,解得,解得, “”是“”的充分必

10、要條件故選:C【點睛】本題主要考查平面向量數(shù)量積的應(yīng)用,考查推理能力與計算能力,屬于基礎(chǔ)題6A【解析】利用復(fù)數(shù)的乘法、除法運算求出,再根據(jù)共軛復(fù)數(shù)的概念即可求解.【詳解】由,則,所以.故選:A【點睛】本題考查了復(fù)數(shù)的四則運算、共軛復(fù)數(shù)的概念,屬于基礎(chǔ)題.7D【解析】設(shè)雙曲線C的左焦點為,連接,由對稱性可知四邊形是平行四邊形,設(shè),得,求出的值,即得解.【詳解】設(shè)雙曲線C的左焦點為,連接,由對稱性可知四邊形是平行四邊形,所以,.設(shè),則,又.故,所以.故選:D【點睛】本題主要考查雙曲線的簡單幾何性質(zhì),考查余弦定理解三角形和三角形面積的計算,意在考查學生對這些知識的理解掌握水平.8A【解析】設(shè)等差數(shù)列

11、的公差為,再利用基本量法與題中給的條件列式求解首項與公差,進而求得即可.【詳解】設(shè)等差數(shù)列的公差為.由得,解得.所以.故選:A【點睛】本題主要考查了等差數(shù)列的基本量求解,屬于基礎(chǔ)題.9A【解析】準確畫圖,由圖形對稱性得出P點坐標,代入圓的方程得到c與a關(guān)系,可求雙曲線的離心率【詳解】設(shè)與軸交于點,由對稱性可知軸,又,為以為直徑的圓的半徑,為圓心,又點在圓上,即,故選A【點睛】本題為圓錐曲線離心率的求解,難度適中,審題時注意半徑還是直徑,優(yōu)先考慮幾何法,避免代數(shù)法從頭至尾,運算繁瑣,準確率大大降低,雙曲線離心率問題是圓錐曲線中的重點問題,需強化練習,才能在解決此類問題時事半功倍,信手拈來10C【

12、解析】將四面體沿著劈開,展開后最短路徑就是的邊,在中,利用余弦定理即可求解.【詳解】將四面體沿著劈開,展開后如下圖所示:最短路徑就是的邊易求得,由,知,由余弦定理知其中,故選:C【點睛】本題考查了余弦定理解三角形,需熟記定理的內(nèi)容,考查了學生的空間想象能力,屬于中檔題.11D【解析】根據(jù)拋物線的定義,結(jié)合,求出的坐標,然后求出的斜率即可【詳解】解:拋物線的焦點,準線方程為,設(shè),則,故,此時,即則直線的斜率故選:D【點睛】本題考查了拋物線的定義,直線斜率公式,屬于中檔題12C【解析】由題意利用函數(shù)的圖象變換規(guī)律,正弦函數(shù)的單調(diào)性,求出的最大值【詳解】解:把函數(shù)的圖象向右平移個單位長度得到函數(shù)的圖

13、象,若函數(shù)在區(qū)間,上單調(diào)遞增,在區(qū)間,上,則當最大時,求得,故選:C【點睛】本題主要考查函數(shù)的圖象變換規(guī)律,正弦函數(shù)的單調(diào)性,屬于基礎(chǔ)題二、填空題:本題共4小題,每小題5分,共20分。132【解析】由題意知:,.由NRF=60,可得為等邊三角形,MFPQ,可得F為HR的中點,即求.【詳解】不妨設(shè)點P在第一象限,如圖所示,連接MF,QF.拋物線C:y2=4x的焦點為F,準線為l,P為C上一點,.M,N分別為PQ,PF的中點,PQ垂直l于點Q,PQ/OR,NRF=60,為等邊三角形,MFPQ,易知四邊形和四邊形都是平行四邊形,F(xiàn)為HR的中點,故答案為:2.【點睛】本題主要考查拋物線的定義,屬于基礎(chǔ)

14、題.14【解析】根據(jù)拋物線,不妨設(shè),取 ,通過求導得, ,再根據(jù)以線段為直徑的圓恰好經(jīng)過,則 ,得到,兩式聯(lián)立,求得點N的軌跡,再求解最值.【詳解】因為拋物線,不妨設(shè),取 ,所以,即,所以 ,因為以線段為直徑的圓恰好經(jīng)過,所以 ,所以,所以,由 ,解得,所以點在直線 上,所以當時, 最小,最小值為.故答案為:2【點睛】本題主要考查直線與拋物線的位置關(guān)系直線的交軌問題,還考查了運算求解的能力,屬于中檔題.15(1),;(2),.【解析】(1)利用代入消參的方法即可將兩個參數(shù)方程轉(zhuǎn)化為普通方程;(2)利用參數(shù)方程,結(jié)合點到直線的距離公式,將問題轉(zhuǎn)化為求解二次函數(shù)最值的問題,即可求得.【詳解】(1)

15、直線的普通方程為.在曲線的參數(shù)方程中,所以曲線的普通方程為.(2)設(shè)點.點到直線的距離.當時,所以點到直線的距離的最小值為.此時點的坐標為.【點睛】本題考查將參數(shù)方程轉(zhuǎn)化為普通方程,以及利用參數(shù)方程求距離的最值問題,屬中檔題.16【解析】試題分析:由已知得,故的展開式中x的奇數(shù)次冪項分別為,其系數(shù)之和為,解得考點:二項式定理三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17(1),232;(2)【解析】(1) 根據(jù)公式代入求解;(2) 先列出基本事件空間,再列出要求的事件,最后求概率即可.【詳解】解:(1)由表格可求出代入公式求出,所以,所以當時,.所以可預(yù)測日平均氣溫為時該出

16、租車公司的網(wǎng)約訂單數(shù)約為232份.(2)記這5天中氣溫不高于的三天分別為,另外兩天分別記為,則在這5天中任意選取2天有,共10個基本事件,其中恰有1天網(wǎng)約訂單數(shù)不低于210份的有,共6個基本事件,所以所求概率,即恰有1天網(wǎng)約訂單數(shù)不低于20份的概率為.【點睛】考查線性回歸系數(shù)的求法以及古典概型求概率的方法,中檔題.18(1)不在,證明見詳解;(2)【解析】(1)假設(shè)直線方程,并于拋物線方程聯(lián)立,結(jié)合韋達定理,計算,可得,然后驗證可得結(jié)果.(2)分別計算線段中垂線的方程,然后聯(lián)立,根據(jù)(1)的條件可得點的軌跡方程,然后可得焦點,結(jié)合拋物線定義可得,計算可得結(jié)果.【詳解】(1)設(shè)直線方程,根據(jù)題意

17、可知直線斜率一定存在,則則由所以將代入上式化簡可得,所以則直線方程為,所以直線過定點,所以可知點不在直線上.(2)設(shè)線段的中點為線段的中點為則直線的斜率為,直線的斜率為可知線段的中垂線的方程為由,所以上式化簡為即線段的中垂線的方程為同理可得:線段的中垂線的方程為則由(1)可知:所以即,所以點軌跡方程為焦點為,所以當三點共線時,有最大所以【點睛】本題考查直線于拋物線的綜合應(yīng)用,第(1)問中難點在于計算處,第(2)問中關(guān)鍵在于得到點的軌跡方程,直線與圓錐曲線的綜合常常要聯(lián)立方程,結(jié)合韋達定理,屬難題.19(1)的普通方程為,的直角坐標方程為. (2)最小值為,此時【解析】(1)由的參數(shù)方程消去求得

18、的普通方程,利用極坐標和直角坐標轉(zhuǎn)化公式,求得的直角坐標方程.(2)設(shè)出點的坐標,利用點到直線的距離公式求得最小值的表達式,結(jié)合三角函數(shù)的指數(shù)求得的最小值以及此時點的坐標.【詳解】(1)由題意知的參數(shù)方程為(為參數(shù))所以的普通方程為.由得,所以的直角坐標方程為. (2)由題意,可設(shè)點的直角坐標為, 因為是直線,所以的最小值即為到的距離,因為 當且僅當時,取得最小值為,此時的直角坐標為即【點睛】本小題主要考查參數(shù)方程化為普通方程,考查極坐標方程化為直角坐標方程,考查利用曲線參數(shù)方程求解點到直線距離的最小值問題,屬于中檔題.20(1)證明見解析;(2).【解析】(1)取 中點,連接,證明平面,由線面垂直的性質(zhì)可得;(2)由,即可求得三棱錐的體積【詳解】解:(1)證明:取中點D,連接,.因為,所以且,因為,平面,平面,所以平面.又平面,所以;(2)解:因為平面,平面,所以平面平面,過N作于E,則平面,因為平面平面,平面平面,平面,所以平面,又因為平面,所以,由于,所以所以,所以.【點睛】本題考查線面垂直,考查三棱錐體積的計算,解題的關(guān)鍵是掌握線面垂直的判定與性質(zhì),屬于中檔題21(1)(2)見解析【解析】(1)取,則;取,則,; (2)要證,只需證,當時,;假設(shè)當時,結(jié)論成立,即

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
  • 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論