版權(quán)說(shuō)明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡(jiǎn)介
2021-2022學(xué)年海南省三亞市某學(xué)校數(shù)學(xué)高職單招試題(含答案)學(xué)校:________班級(jí):________姓名:________考號(hào):________
一、單選題(10題)1.A.第一象限角B.第二象限角C.第三象限角D.第四象限角
2.已知角α的終邊經(jīng)過(guò)點(diǎn)(-4,3),則cosα()A.4/5B.3/5C.-3/5D.-4/5
3.A.-1B.-4C.4D.2
4.A=,是AB=的()A.充分條件B.必要條件C.充要條件D.既不充分也不必要條件
5.已知a是函數(shù)f(x)=x3-12x的極小值點(diǎn),則a=()A.-4B.-2C.4D.2
6.若不等式|ax+2|<6的解集為(-1,2),則實(shí)數(shù)a等于()A.8B.2C.-4D.-8
7.將三名教師排列到兩個(gè)班任教的安排方案數(shù)為()A.5B.6C.8D.9
8.A.3
B.8
C.
9.A.B.{3}
C.{1,5,6,9}
D.{1,3,5,6,9}
10.過(guò)點(diǎn)A(2,1),B(3,2)直線方程為()A.x+y-1=0B.x-y-1=0C.x+y+l=0D.x-y+l=0
二、填空題(10題)11.要使的定義域?yàn)橐磺袑?shí)數(shù),則k的取值范圍_____.
12.
13.某田徑隊(duì)有男運(yùn)動(dòng)員30人,女運(yùn)動(dòng)員10人.用分層抽樣的方法從中抽出一個(gè)容量為20的樣本,則抽出的女運(yùn)動(dòng)員有______人.
14.設(shè)AB是異面直線a,b的公垂線段,已知AB=2,a與b所成角為30°,在a上取線段AP=4,則點(diǎn)P到直線b的距離為_____.
15.函數(shù)y=3sin(2x+1)的最小正周期為
。
16.設(shè)等差數(shù)列{an}的前n項(xiàng)和為Sn,若S8=32,則a2+2a5十a(chǎn)6=_______.
17.設(shè)lgx=a,則lg(1000x)=
。
18.若f(x)=2x3+1,則f(1)=
。
19.以點(diǎn)(1,0)為圓心,4為半徑的圓的方程為_____.
20.若=_____.
三、計(jì)算題(5題)21.己知{an}為等差數(shù)列,其前n項(xiàng)和為Sn,若a3=6,S3=12,求公差d.
22.有語(yǔ)文書3本,數(shù)學(xué)書4本,英語(yǔ)書5本,書都各不相同,要把這些書隨機(jī)排在書架上.(1)求三種書各自都必須排在一起的排法有多少種?(2)求英語(yǔ)書不挨著排的概率P。
23.(1)求函數(shù)f(x)的定義域;(2)判斷函數(shù)f(x)的奇偶性,并說(shuō)明理由。
24.求焦點(diǎn)x軸上,實(shí)半軸長(zhǎng)為4,且離心率為3/2的雙曲線方程.
25.己知直線l與直線y=2x+5平行,且直線l過(guò)點(diǎn)(3,2).(1)求直線l的方程;(2)求直線l在y軸上的截距.
四、證明題(5題)26.長(zhǎng)、寬、高分別為3,4,5的長(zhǎng)方體,沿相鄰面對(duì)角線截取一個(gè)三棱錐(如圖).求證:剩下幾何體的體積為三棱錐體積的5倍.
27.己知直線l:x+y+4=0且圓心為(1,-1)的圓C與直線l相切。證明:圓C的標(biāo)準(zhǔn)方程為(x-1)2
+(y+1)2
=8.
28.
29.若x∈(0,1),求證:log3X3<log3X<X3.
30.己知x∈(1,10),A=lg2x,B=lgx2,證明:A<B.
五、簡(jiǎn)答題(5題)31.已知函數(shù),且.(1)求a的值;(2)求f(x)函數(shù)的定義域及值域.
32.求經(jīng)過(guò)點(diǎn)P(2,-3)且橫縱截距相等的直線方程
33.在1,2,3三個(gè)數(shù)字組成無(wú)重復(fù)數(shù)字的所有三位數(shù)中,隨機(jī)抽取一個(gè)數(shù),求:(1)此三位數(shù)是偶數(shù)的概率;(2)此三位數(shù)中奇數(shù)相鄰的概率.
34.證明上是增函數(shù)
35.在三棱錐P-ABC中,已知PA丄BC,PA=a,EC=b,PA,BC的公垂線EF=h,求三棱錐的體積
六、綜合題(5題)36.在△ABC中,角A,B,C的對(duì)邊分別為a,b,c,且bcosC=(3a-c)cosB.(1)求cosB的值;(2)
37.己知橢圓與拋物線y2=4x有共同的焦點(diǎn)F2,過(guò)橢圓的左焦點(diǎn)F1作傾斜角為的直線,與橢圓相交于M、N兩點(diǎn).求:(1)直線MN的方程和橢圓的方程;(2)△OMN的面積.
38.己知點(diǎn)A(0,2),5(-2,-2).(1)求過(guò)A,B兩點(diǎn)的直線l的方程;(2)己知點(diǎn)A在橢圓C:上,且(1)中的直線l過(guò)橢圓C的左焦點(diǎn)。求橢圓C的標(biāo)準(zhǔn)方程.
39.
(1)求該直線l的方程;(2)求圓心該直線上且與兩坐標(biāo)軸相切的圓的標(biāo)準(zhǔn)方程.
40.
參考答案
1.B
2.D三角函數(shù)的定義.記P(-4,3),則x=-4,y=3,r=|OP|=,故cosα=x/r=-4/5
3.C
4.AA是空集可以得到A交B為空集,但是反之不成立,因此時(shí)充分條件。
5.D導(dǎo)數(shù)在研究函數(shù)中的應(yīng)用∵f(x)=x3-12x,f’(x)=3x2-12,令f(x)=0,則x1=-2,x2=2.當(dāng)x∈(-∞,-2),(2,+∞)時(shí),f(x)>0,則f(x)單調(diào)遞增;當(dāng)x∈(―2,2)時(shí),f(x)<0,則f(x)單調(diào)遞減,∴f(x)的極小值點(diǎn)為a=2.
6.C
7.B
8.A
9.D
10.B直線的兩點(diǎn)式方程.點(diǎn)代入驗(yàn)證方程.
11.-1≤k<3
12.-6
13.5分層抽樣方法.因?yàn)槟羞\(yùn)動(dòng)員30人,女運(yùn)動(dòng)員10人,所以抽出的女運(yùn)動(dòng)員有10f(10+30)×20=1/4×20=5人.
14.
,以直線b和A作平面,作P在該平面上的垂點(diǎn)D,作DC垂直b于C,則有PD=,BD=4,DC=2,因此PC=,(PC為垂直于b的直線).
15.
16.16.等差數(shù)列的性質(zhì).由S8=32得4(a4+a5)=8,故a2+2a5+a6=2(a4+a5)=16.
17.3+alg(1000x)=lg(1000)+lgx=3+a。
18.3f(1)=2+1=3.
19.(x-1)2+y2=16圓的方程.當(dāng)圓心坐標(biāo)為(x0,y0)時(shí),圓的-般方程為(x-x0)+(y-y0)=r2.所以,(x-1)2+y2=16
20.
,
21.
22.
23.
24.解:實(shí)半軸長(zhǎng)為4∴a=4e=c/a=3/2,∴c=6∴a2=16,b2=c2-a2=20雙曲線方程為
25.解:(1)設(shè)所求直線l的方程為:2x-y+c=0∵直線l過(guò)點(diǎn)(3,2)∴6-2+c=0即c=-4∴所求直線l的方程為:2x-y-4=0(2)∵當(dāng)x=0時(shí),y=-4∴直線l在y軸上的截距為-4
26.證明:根據(jù)該幾何體的特征,可知所剩的幾何體的體積為長(zhǎng)方體的體積減去所截的三棱錐的體積,即
27.
28.
29.
30.證明:考慮對(duì)數(shù)函數(shù)y=lgx的限制知
:當(dāng)x∈(1,10)時(shí),y∈(0,1)A-B=lg2
x-lgx2
=lgx·lgx-2lgx=lgx(lgx-2)∵lgx∈(0,1)∴l(xiāng)gx-2<0A-B<0∴A<B
31.(1)(2)
32.設(shè)所求直線方程為y=kx+b由題意可知-3=2k+b,b=解得,時(shí),b=0或k=-1時(shí),b=-1∴所求直線為
33.1,2,3三個(gè)數(shù)字組成無(wú)重復(fù)數(shù)字的所有三位數(shù)共有(1)其中偶數(shù)有,故所求概率為(2)其中奇數(shù)相鄰的三位數(shù)有個(gè)故所求概率為
34.證明:任取且x1<x2∴即∴在是增函數(shù)
35.
36.
37.
38.解:(1)直線l過(guò)A(0,2),B(-2,-2)兩點(diǎn),根據(jù)斜率公式可得斜率因此直線l的方程為y-2=2x即2x-y+2=0⑵由⑴知,直線l的方程為2x-y+2=0,因此直線l與x軸的交點(diǎn)為(-1,0).又直線l過(guò)橢圓C的左焦點(diǎn),故橢圓C的左焦點(diǎn)為(-1,0).設(shè)橢圓C的焦距為2c,則有c=1因?yàn)辄c(diǎn)A(0,2)在橢圓C:上所以b=2根據(jù)a2=b2+c2,有a=故橢圓C的標(biāo)準(zhǔn)方程為
39.解:(1)斜率k=5/3,設(shè)直線l的方程5x-3y+m=0,直線l經(jīng)過(guò)點(diǎn)(0,-8/3),所以m=8,直線l的方程為5x-3y-8=
溫馨提示
- 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 二零二五年度專業(yè)自駕旅游包車代駕服務(wù)合同
- 2025年度棚改項(xiàng)目回遷房買賣合同范本
- 2025年桉樹種植基地環(huán)保設(shè)施建設(shè)與運(yùn)營(yíng)合同3篇
- 2025版智能城市基礎(chǔ)設(shè)施建設(shè)招投標(biāo)與合同管理指導(dǎo)文件2篇
- 萬(wàn)科旅游房產(chǎn)買賣合同(2024年專用)3篇
- 二零二五年度專業(yè)配音演員獨(dú)家聘用合同范本4篇
- 二零二五年度太陽(yáng)能熱水系統(tǒng)施工合同規(guī)范文本4篇
- 二零二五年度創(chuàng)業(yè)公司股權(quán)激勵(lì)及期權(quán)授予合同3篇
- 二零二五年度團(tuán)隊(duì)旅游數(shù)據(jù)共享合同
- 2025年度寫字樓退租合同(含辦公家具設(shè)備退還明細(xì))4篇
- 企業(yè)文化融入中華傳統(tǒng)文化的實(shí)施方案
- 9.1增強(qiáng)安全意識(shí) 教學(xué)設(shè)計(jì) 2024-2025學(xué)年統(tǒng)編版道德與法治七年級(jí)上冊(cè)
- 《化工設(shè)備機(jī)械基礎(chǔ)(第8版)》全套教學(xué)課件
- 人教版八年級(jí)數(shù)學(xué)下冊(cè)舉一反三專題17.6勾股定理章末八大題型總結(jié)(培優(yōu)篇)(學(xué)生版+解析)
- 2024屆上海高考語(yǔ)文課內(nèi)古詩(shī)文背誦默寫篇目(精校版)
- DL-T5024-2020電力工程地基處理技術(shù)規(guī)程
- 初中數(shù)學(xué)要背誦記憶知識(shí)點(diǎn)(概念+公式)
- 駕照體檢表完整版本
- 農(nóng)產(chǎn)品農(nóng)藥殘留檢測(cè)及風(fēng)險(xiǎn)評(píng)估
- 農(nóng)村高中思想政治課時(shí)政教育研究的中期報(bào)告
- 20100927-宣化上人《愣嚴(yán)咒句偈疏解》(簡(jiǎn)體全)
評(píng)論
0/150
提交評(píng)論