2021年吉林省白城市某學校數(shù)學單招試卷(含答案)_第1頁
2021年吉林省白城市某學校數(shù)學單招試卷(含答案)_第2頁
2021年吉林省白城市某學校數(shù)學單招試卷(含答案)_第3頁
2021年吉林省白城市某學校數(shù)學單招試卷(含答案)_第4頁
2021年吉林省白城市某學校數(shù)學單招試卷(含答案)_第5頁
已閱讀5頁,還剩16頁未讀 繼續(xù)免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領

文檔簡介

2021年吉林省白城市某學校數(shù)學單招試卷(含答案)學校:________班級:________姓名:________考號:________

一、單選題(10題)1.已知互相垂直的平面α,β交于直線l若直線m,n滿足m⊥a,n⊥β則()A.m//LB.m//nC.n⊥LD.m⊥n

2.圓心為(1,1)且過原點的圓的方程是()A.(x-l)2+(y-1)2=1

B.(x+1)2+(y+1)2=1

C.(x+1)2+(y+1)2=2

D.(x-1)2+(y-1)2=2

3.A.2B.1C.1/2

4.已知直線L過點(0,7),且與直線y=-4x+2平行,則直線L的方程為()A.y=-4x-7B.y=4x—7C.y=-4x+7D.y=4x+7

5.A.(-2.3)B.(2,3]C.[2,3)D.[-2,3]

6.已知a∈(π,3/2π),cosα=-4/5,則tan(π/4-α)等于()A.7B.1/7C.-1/7D.-7

7.下列函數(shù)中,在其定義域內既是偶函數(shù),又在(-∞,0)上單調遞增的函數(shù)是()A.f(x)=x2

B.f(x)=2|x|

C.f(x)=log21/|x|

D.f(x)=sin2x

8.已知圓C與直線x-y=0及x-y-4=0都相切,圓心在直線x+y=0上,則圓C的方程為()A.(x+1)2+(y-1)2=2

B.(x-1)2+(y+1)2=2

C.(x-1)2+(y-1)2=2

D.(x+1)2+(y+1)2=2

9.函數(shù)在(-,3)上單調遞增,則a的取值范圍是()A.a≥6B.a≤6C.a>6D.-8

10.設一直線過點(2,3)且它在坐標軸上的截距和為10,則直線方程為()A.

B.

C.

D.

二、填空題(10題)11.在平面直角坐標系xOy中,直線2x+ay-1=0和直線(2a-1)x-y+1=0互相垂直,則實數(shù)a的值是______________.

12.設lgx=a,則lg(1000x)=

。

13.不等式的解集為_____.

14.在等比數(shù)列{an}中,a5

=4,a7

=6,則a9

=

。

15.

16.(x+2)6的展開式中x3的系數(shù)為

。

17.若lgx>3,則x的取值范圍為____.

18.按如圖所示的流程圖運算,則輸出的S=_____.

19.要使的定義域為一切實數(shù),則k的取值范圍_____.

20.

三、計算題(5題)21.甲、乙兩人進行投籃訓練,己知甲投球命中的概率是1/2,乙投球命中的概率是3/5,且兩人投球命中與否相互之間沒有影響.(1)若兩人各投球1次,求恰有1人命中的概率;(2)若兩人各投球2次,求這4次投球中至少有1次命中的概率.

22.已知函數(shù)y=cos2x+3sin2x,x∈R求:(1)函數(shù)的值域;(2)函數(shù)的最小正周期。

23.求焦點x軸上,實半軸長為4,且離心率為3/2的雙曲線方程.

24.己知直線l與直線y=2x+5平行,且直線l過點(3,2).(1)求直線l的方程;(2)求直線l在y軸上的截距.

25.近年來,某市為了促進生活垃圾的分類處理,將生活垃圾分為“廚余垃圾”、“可回收垃圾”、“有害垃圾”和“其他垃圾”等四類,并分別垛置了相應的垃圾箱,為調查居民生活垃圾的正確分類投放情況,現(xiàn)隨機抽取了該市四類垃圾箱總計100噸生活垃圾,數(shù)據(jù)統(tǒng)計如下(單位:噸):(1)試估計“可回收垃圾”投放正確的概率;(2)試估計生活垃圾投放錯誤的概率。

四、證明題(5題)26.己知直線l:x+y+4=0且圓心為(1,-1)的圓C與直線l相切。證明:圓C的標準方程為(x-1)2

+(y+1)2

=8.

27.己知sin(θ+α)=sin(θ+β),求證:

28.△ABC的三邊分別為a,b,c,為且,求證∠C=

29.己知正方體ABCD-A1B1C1D1,證明:直線AC1與直線A1D1所成角的余弦值為.

30.長、寬、高分別為3,4,5的長方體,沿相鄰面對角線截取一個三棱錐(如圖).求證:剩下幾何體的體積為三棱錐體積的5倍.

五、簡答題(5題)31.等比數(shù)列{an}的前n項和Sn,已知S1,S3,S2成等差數(shù)列(1)求數(shù)列{an}的公比q(2)當a1-a3=3時,求Sn

32.已知雙曲線C:的右焦點為,且點到C的一條漸近線的距離為.(1)求雙曲線C的標準方程;(2)設P為雙曲線C上一點,若|PF1|=,求點P到C的左焦點的距離.

33.已知函數(shù).(1)求f(x)的定義域;(2)判斷f(x)的奇偶性,并加以證明;(3)a>1時,判斷函數(shù)的單調性并加以證明。

34.某中學試驗班有同學50名,其中女生30人,男生20人,現(xiàn)在從中選取2人取參加校際活動,求(1)選出的2人都是女生的概率。(2)選出的2人是1男1女的概率。

35.一條直線l被兩條直線:4x+y+6=0,3x-5y-6=0截得的線段中點恰好是坐標原點,求直線l的方程.

六、綜合題(5題)36.己知點A(0,2),5(-2,-2).(1)求過A,B兩點的直線l的方程;(2)己知點A在橢圓C:上,且(1)中的直線l過橢圓C的左焦點。求橢圓C的標準方程.

37.在△ABC中,角A,B,C的對邊分別為a,b,c,且bcosC=(3a-c)cosB.(1)求cosB的值;(2)

38.

39.己知橢圓與拋物線y2=4x有共同的焦點F2,過橢圓的左焦點F1作傾斜角為的直線,與橢圓相交于M、N兩點.求:(1)直線MN的方程和橢圓的方程;(2)△OMN的面積.

40.

(1)求該直線l的方程;(2)求圓心該直線上且與兩坐標軸相切的圓的標準方程.

參考答案

1.C直線與平面垂直的判定.由已知,α∩β=L,所以L包含于β,又因為n⊥β,所以n⊥L.

2.D圓的標準方程.圓的半徑r

3.B

4.C直線的點斜式方程∵直線l與直線y=-4x+2平行,∴直線l的斜率為-4,又直線l過點(0,7),∴直線l的方程為y-7=-4(x-0),即y=-4x+7.

5.B

6.B三角函數(shù)的計算及恒等變換∵α∈(π,3π/2),cosα=-4/5,∴sinα=-3/5,故tanα=sinα/cosα=3/4,因此tanα(π/4-α)=1-tanα/(1+tanα)=1/7

7.C函數(shù)的奇偶性,單調性.函數(shù)f(x)=x2是偶函數(shù),但在區(qū)間(-∞,0)上單調遞減,不合題意;函數(shù)f(x)=2|x|是偶函數(shù),但在區(qū)間(-∞,0)上單調遞減,不合題意;函數(shù)f(x)=㏒21/|x|是偶函數(shù),且在區(qū)間(-∞,0)上單調遞增,符合題意;函數(shù)f(x)=sin2x是奇函數(shù),不合題意.

8.B

9.A

10.D

11.2/3兩直線的位置關系.由題意得-2/a×(2a-1)=-1,解得a=2/3

12.3+alg(1000x)=lg(1000)+lgx=3+a。

13.-1<X<4,

14.

15.λ=1,μ=4

16.160

17.x>1000對數(shù)有意義的條件

18.20流程圖的運算.由題意可知第一次a=5,s=1,滿足a≥4,S=1×5=5,a=a-1=4,當a=4時滿足a≥4,輸出S=20.綜上所述,答案20.

19.-1≤k<3

20.π/2

21.

22.

23.解:實半軸長為4∴a=4e=c/a=3/2,∴c=6∴a2=16,b2=c2-a2=20雙曲線方程為

24.解:(1)設所求直線l的方程為:2x-y+c=0∵直線l過點(3,2)∴6-2+c=0即c=-4∴所求直線l的方程為:2x-y-4=0(2)∵當x=0時,y=-4∴直線l在y軸上的截距為-4

25.

26.

27.

28.

29.

30.證明:根據(jù)該幾何體的特征,可知所剩的幾何體的體積為長方體的體積減去所截的三棱錐的體積,即

31.

32.(1)∵雙曲線C的右焦點為F1(2,0),∴c=2又點F1到C1的一條漸近線的距離為,∴,即以解得b=

33.(1)-1<x<1(2)奇函數(shù)(3)單調遞增函數(shù)

34.(1)2人都是女生的概率P=C(2,30)/C(2,50)=30*29/(50*49)=0.35510

(2)2人都是男生的概率P=C(2,20)/C(2,50)=20*19/(50*49)=0.15510

選出的一男一女的概率P=C(1,20)*C(1,30)/C(2,50)=20*30/((50*49)/2)=0.4897

35.

36.解:(1)直線l過A(0,2),B(-2,-2)兩點,根據(jù)斜率公式可得斜率因此直線l的方程為y-2=2x即2x-y+2=0⑵由⑴知,直線l的方程為2x-y+2=0,因此直線l與x軸的交點為(-1,0).又直線l過橢圓C的左焦點,故橢圓C的左焦點為(-1,0).設橢圓C的焦距為2c,則有c=1因為點A(0,2)在橢圓C:上所以b=2根據(jù)a2=b2+c2,有a=故橢圓C的標準方程為

37.

38.

39.

40.解:(1)斜率k=5/3,設直線l的方程5x-3y+m=0,直線l經(jīng)過點(

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經(jīng)權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
  • 6. 下載文件中如有侵權或不適當內容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

最新文檔

評論

0/150

提交評論