專業(yè)-金融計(jì)量lecture02簡單回歸_第1頁
專業(yè)-金融計(jì)量lecture02簡單回歸_第2頁
專業(yè)-金融計(jì)量lecture02簡單回歸_第3頁
專業(yè)-金融計(jì)量lecture02簡單回歸_第4頁
專業(yè)-金融計(jì)量lecture02簡單回歸_第5頁
已閱讀5頁,還剩23頁未讀, 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡介

Lecture02

Simplelinearmodel

Outline2.1Introducingsimplemodel2.2OLSestimation2.3PropertiesofOLSStatistics2.1IntroducingsimplelinearmodelSimpletaskineconometrics

“explainingyintermsofx,”orin“studyinghowyvarieswithchangesinx.”影響是否存在?如何影響?有多大影響?其實(shí)就是建立關(guān)系,甚至是因果關(guān)系三大任務(wù)都可以表示為這樣:estimatingeconomicrelationshipsEffectofeducationonwages:whatisx,whatisy?EffectofspendingonpoliceoncrimeEffectofhoursspentstudyingonthefinalgradeattheexamSimpletaskineconometricstestingeconomictheoriesCAPM,whatisx,whatisy?andmoreevaluatinggovernmentandbusinesspolicy勞動(dòng)培訓(xùn)是否能(在多大程度上)幫助失業(yè)的人找到工作,提高工資?Threeproblemswiththesimpletasksincethereisneveranexactrelationshipbetweentwovariables,howdoweallowforotherfactorstoaffecty?Wagedependsonmanyfactors,includingeducation不是充分必要的關(guān)系,不是確定性的關(guān)系whatisthefunctionalrelationshipbetweenyandx?Positivecorrelated,butlinearornonlinear?howcanwebesurewearecapturingaceterisparibusrelationshipbetweenyandx(ifthatisadesiredgoal)?AchievethegoalbyasimplelinearregressionAsimpleequationtoexplainyintermsofxiswhereuisarandomvariableuncorrelatedwithx在多元的情況下,controlvariableshavedifferentmeaningsfromtheotherterms

Threeproblemscanbesolvedinthisequationtohandletheproblem1:errortermThejointeffectofallotherfactorstohandleproblem2:linearrelationship:meaning:aone-unitchangeinxhasthesame

effectony,regardlessoftheinitialvalueofx.Istheeffectofeducationonwagelinear?10->11yrsvs.11->12yrs?Otherrelationship?3.Problem3,CeterisParibusassumptionpartialderivativesexplanation:Meaningoftheassumption->partialderivatives->inordertoletbetacapturetheeffect,partialderivativeofuoverxshouldbezero!Randomvariableexplanation:ifx,y,anduareallrandom,andxisindependentofu,onaverage,betawillcapturetheeffect.Infact,uncorrelatedisenoughTheuncorrelationassumptionisequivalenttoE(u|x)=E(u)(2.6)economicinterpretationBecausethereexistsbeta0,wecanalwaysassumethatE(u)=0tohavepopulationregressionfunction(PRF)Model2.1isalsocalledlinearregressionmodel,regressionofyonx“回歸”一詞的由來回歸分析最旱起源于生物學(xué)的研究,“回歸”最初是遺傳學(xué)中的一個(gè)名詞。1889年英國的生物學(xué)家兼統(tǒng)計(jì)學(xué)家F.Gallton和他的朋友K.Pearson收集了上千個(gè)家庭成員的身高、臂長和腿長的記錄。企圖尋找出子女們身高與父母們身高之間關(guān)系的具體表現(xiàn)形式。假定線性模型X為父母的平均身高,Y為成年子女的平均身高。根據(jù)1078個(gè)家庭的調(diào)查結(jié)果估計(jì)系數(shù)得到:一個(gè)數(shù)值分析:平均174.23cm(?),矮個(gè)父母(160cm)的孩子身高166.89cm;搞個(gè)父母(180cm)的孩子身高177.21cm。龍生龍,鳳生鳳,老鼠的兒子會(huì)打洞但并非高的越長越高,矮的越長越矮。父母身高增加一個(gè)單位(由于變異或其他原因),而Y僅增加0.516個(gè)單位)。高個(gè)子父母的子女身高有低于其父母身高的趨勢,而矮個(gè)子父母的子女身高有高于其父母身高的趨勢,結(jié)論:父母所生子女有回歸于人類平均身高的趨勢,故某人種的平均身高是相當(dāng)穩(wěn)定的。Galton把這種孩子的身高向中間值靠近的趨勢稱之為一種回歸效應(yīng),而他發(fā)展的研究兩個(gè)數(shù)值變量的方法稱為回歸分析。見1889年F.Gallton的論文《普用回歸定律》回歸的含義:任何變異的東西總有趨向于一般、平穩(wěn)的勢頭?;貧w應(yīng)該是mean-reverting回歸定律的普適性窮不過三代,富不過三代好電影的續(xù)集JF上關(guān)于資本結(jié)構(gòu)的獲獎(jiǎng)?wù)撐腤hatifwehavetherelationbelow,stillmeanreverting?Eventhoughnotnecessarymeanreverting,itisstillcalledregressionmodel統(tǒng)計(jì)課上也講回歸分析,幾點(diǎn)差別在統(tǒng)計(jì)中x一般是確定的,我們這里不要求,只要求x是外生的(x影響y,而不是y對(duì)x也有影響)統(tǒng)計(jì)中不講為什么要求x確定(或外生)。2.2estimatingthesimplelinearmodelWhydoweneedtoestimateamodel?Fromdataandeconomictheory(intuition)tocausalityeffect,weneedtoknowtheparametersCase1:twoobservationsCaseII:multipleobservations,whichisthebest?DependsonthecriteriaTherearemanymethodstoestimateamodel.OLSisthesimplestone.Twostepstoderiveit:DefineobjectiveOptimizingtheobjectiveAnyestimationmethodinvolvesoptimizinganobjectiveMLE:log-likelihoodGMM:momentsdifference我們介紹最小二乘法(OLS),因?yàn)樗庇^(道理)、簡單(計(jì)算)DerivingOLSestimatorDefineerror:Equation(2.20)isalsocalledsampleregressionfunction

DefineobjectiveWewanttochoosebeta_hattomakethesumofsquaredresiduals,assmallaspossible.簡單和?絕對(duì)值之和?OptimizationtogettheformulaFOCSOCsolutionExample2.3:CEOsalaryandreturnonequity.OutsiderswanttoknowwhetherCEO’sarepaidbytheirperformanceTostudytherelationshipbetweenthefirmperformance(measuredasROE)andCEOcompensation(salary),wepostulatethesimplemodelData:CEOSAL1SAS:人工計(jì)算SAS:regcommandData:CEOSAL1SASInterprettheregressionexampleWhattheparameterestimatorsmean:beta0_hat,beta1_hatForecastingWhatisforecastinganyway?CausalityanalysisWhatdoweexpectforbeta1.Whatifbeta1_hat=0,<0,>>>0?Whatistheestimator?2.3PropertiesofOLSStatisticsAlgebraicPropertiesofOLSStatisticsWecanviewOLSasposingeachyiintotwopart擬合值及擬合誤差Thesummationoferror=0Proof:FOC打獵Thesamplecovariancebetweentheregressorsandtheresiduals=0Proof:FOC22Goodness-of-FitWhyisitaproblem?Youmightthinkthatonewaytomeasurethefitofthemodelistoadduptheresiduals.However,bydefinitiontheresidualswillsumtozero.Analternativeistosquaretheresiduals,addthemup(givingtheRSS)andthentakethesquareroot.RootMSE=squarerootofRSS/n-kOnewaytointerprettherootMSEisthatitshowshowfarawayonaveragethemodelisfromexplainingyArelativeerrormeasure:R2Goodness-of-Fit:R2IntroducingSST,SSEandSSRItiseasytoshowthatIntroducingRsquare:TheR-squaredoftheregression,sometimescalledthecoefficientofdetermination,isdefinedasMeaningofR2theratiooftheexplainedvariationcomparedto

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。

評(píng)論

0/150

提交評(píng)論