版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認(rèn)領(lǐng)
文檔簡介
高一數(shù)學(xué)知識點易錯點總結(jié)高一數(shù)學(xué)知識點易錯點總結(jié)下面就是為各位同學(xué)帶來的高一數(shù)學(xué)知識點易錯點總結(jié),高一數(shù)學(xué)學(xué)習(xí)過程中,有很多易錯點需要掌握,具體有哪些呢?請看下面:高一數(shù)學(xué)知識點易錯點總結(jié)(一)易錯點1遺忘空集致誤由于空集是任何非空集合的真子集,因此B=?時也滿足B?A.解含有參數(shù)的集合問題時,要特別注意當(dāng)參數(shù)在某個范圍內(nèi)取值時所給的集合可能是空集這種情況.易錯點2忽視集合元素的三性致誤集合中的元素具有確定性、無序性、互異性,集合元素的三性中互異性對解題的影響最大,特別是帶有字母參數(shù)的集合,實際上就隱含著對字母參數(shù)的一些要求.易錯點3混淆命題的否定與否命題命題的“否定”與命題的“否命題”是兩個不同的概念,命題p的否定是否定命題所作的判斷,而“否命題”是對“若p,則q”形式的命題而言,既要否定條件也要否定結(jié)論.易錯點4充分條件、必要條件顛倒致誤對于兩個條件A,B,如果A?B成立,則A是B的充分條件,B是A的必要條件;如果B?A成立,則A是B的必要條件,B是A的充分條件;如果A?B,則A,B互為充分必要條件.解題時最容易出錯的就是顛倒了充分性與必要性,所以在解決這類問題時一定要根據(jù)充分條件和必要條件的概念作出準(zhǔn)確的判斷.易錯點5“或”“且”“非”理解不準(zhǔn)致誤命題p∨q真?p真或q真,命題p∨q假?p假且q假(概括為一真即真);命題p∧q真?p真且q真,命題p∧q假?p假或q假(概括為一假即假);綈p真?p假,綈p假?p真(概括為一真一假).求參數(shù)取值范圍的題目,也可以把“或”“且”“非”與集合的“并”“交”“補”對應(yīng)起來進行理解,通過集合的運算求解.易錯點6函數(shù)的單調(diào)區(qū)間理解不準(zhǔn)致誤在研究函數(shù)問題時要時時刻刻想到“函數(shù)的圖像”,學(xué)會從函數(shù)圖像上去分析問題、尋找解決問題的方法.對于函數(shù)的幾個不同的單調(diào)遞增(減)區(qū)間,切忌使用并集,只要指明這幾個區(qū)間是該函數(shù)的單調(diào)遞增(減)區(qū)間即可.易錯點7判斷函數(shù)的奇偶性忽略定義域致誤判斷函數(shù)的奇偶性,首先要考慮函數(shù)的定義域,一個函數(shù)具備奇偶性的必要條件是這個函數(shù)的定義域關(guān)于原點對稱,如果不具備這個條件,函數(shù)一定是非奇非偶函數(shù).易錯點8函數(shù)零點定理使用不當(dāng)致誤如果函數(shù)y=f(x)在區(qū)間[a,b]上的圖像是一條連續(xù)的曲線,并且有f(a)f(b)<0,那么,函數(shù)y=f(x)在區(qū)間(a,b)內(nèi)有零點,但f(a)f(b)>0時,不能否定函數(shù)y=f(x)在(a,b)內(nèi)有零點.函數(shù)的零點有“變號零點”和“不變號零點”,對于“不變號零點”函數(shù)的零點定理是“無能為力”的,在解決函數(shù)的零點問題時要注意這個問題.易錯點9導(dǎo)數(shù)的幾何意義不明致誤函數(shù)在一點處的導(dǎo)數(shù)值是函數(shù)圖像在該點處的切線的斜率.但在許多問題中,往往是要解決過函數(shù)圖像外的一點向函數(shù)圖像上引切線的問題,解決這類問題的基本思想是設(shè)出切點坐標(biāo),根據(jù)導(dǎo)數(shù)的幾何意義寫出切線方程.然后根據(jù)題目中給出的其他條件列方程(組)求解.因此解題中要分清是“在某點處的切線”,還是“過某點的切線”.易錯點10導(dǎo)數(shù)與極值關(guān)系不清致誤f′(x0)=0只是可導(dǎo)函數(shù)f(x)在x0處取得極值的必要條件,即必須有這個條件,但只有這個條件還不夠,還要考慮是否滿足f′(x)在x0兩側(cè)異號.另外,已知極值點求參數(shù)時要進行檢驗.高一數(shù)學(xué)知識點易錯點總結(jié)(二)易錯點1三角函數(shù)的單調(diào)性判斷致誤對于函數(shù)y=Asin(ωx+φ)的單調(diào)性,當(dāng)ω>0時,由于內(nèi)層函數(shù)u=ωx+φ是單調(diào)遞增的,所以該函數(shù)的單調(diào)性和y=sinx的單調(diào)性相同,故可完全按照函數(shù)y=sinx的`單調(diào)區(qū)間解決;但當(dāng)ω<0時,內(nèi)層函數(shù)u=ωx+φ是單調(diào)遞減的,此時該函數(shù)的單調(diào)性和函數(shù)y=sinx的單調(diào)性相反,就不能再按照函數(shù)y=sinx的單調(diào)性解決,一般是根據(jù)三角函數(shù)的奇偶性將內(nèi)層函數(shù)的系數(shù)變?yōu)檎龜?shù)后再加以解決.對于帶有絕對值的三角函數(shù)應(yīng)該根據(jù)圖像,從直觀上進行判斷.易錯點2圖像變換方向把握不準(zhǔn)致誤函數(shù)y=Asin(ωx+φ)(其中A>0,ω>0,x∈R)的圖像可看作由下面的方法得到:(1)把正弦曲線上的所有點向左(當(dāng)φ>0時)或向右(當(dāng)φ<0時)平行移動|φ|個單位長度;(2)再把所得各點橫坐標(biāo)縮短(當(dāng)ω>1時)或伸長(當(dāng)0<ω<1時)到原來的1ω倍(縱坐標(biāo)不變);(3)再把所得各點的縱坐標(biāo)伸長(當(dāng)A>1時)或縮短(當(dāng)0易錯點3忽視零向量致誤零向量是向量中最特殊的向量,規(guī)定零向量的長度為0,其方向是任意的,零向量與任意向量都共線.它在向量中的位置正如實數(shù)中0的位置一樣,但有了它容易引起一些混淆,稍微考慮不到就會出錯,考生應(yīng)給予足夠的重視.易錯點4向量夾角范圍不清致誤解題時要全面考慮問題.數(shù)學(xué)試題中往往隱含著一些容易被考生所忽視的因素,能不能在解題時把這些因素考慮到,是解題成功的關(guān)鍵,如當(dāng)a·b<0時,a與b的夾角不一定為鈍角,要注意θ=π的情況.易錯點5an與Sn關(guān)系不清致誤在數(shù)列問題中,數(shù)列的通項an與其前n項和Sn之間存在下列關(guān)系:an=S1,n=1,Sn-Sn-1,n≥2.這個關(guān)系對任意數(shù)列都是成立的,但要注意的是這個關(guān)系式是分段的,在n=1和n≥2時這個關(guān)系式具有完全不同的表現(xiàn)形式,這也是解題中經(jīng)常出錯的一個地方,在使用這個關(guān)系式時要牢牢記住其“分段”的特點.易錯點6對等差、等比數(shù)列的定義、性質(zhì)理解錯誤等差數(shù)列的前n項和在公差不為零時是關(guān)于n的常數(shù)項為零的二次函數(shù);一般地,有結(jié)論“若數(shù)列{an}的前n項和Sn=an2+bn+c(a,b,c∈R),則數(shù)列{an}為等差數(shù)列的充要條件是c=0”;在等差數(shù)列中,Sm,S2m-Sm,S3m-S2m(m∈N*)是等差數(shù)列.易錯點7數(shù)列中的最值錯誤數(shù)列問題中其通項公式、前n項和公式都是關(guān)于正整數(shù)n的函數(shù),要善于從函數(shù)的觀點認(rèn)識和理解數(shù)列問題.數(shù)列的通項an與前n項和Sn的關(guān)系是高考的命題重點,解題時要注意把n=1和n≥2分開討論,再看能不能統(tǒng)一.在關(guān)于正整數(shù)n的二次函數(shù)中其取最值的點要根據(jù)正整數(shù)距離二次函數(shù)的對稱軸的遠(yuǎn)近而定.易錯點8錯位相減求和時項數(shù)處理不當(dāng)致誤錯位相減求和法的適用條件:數(shù)列是由一個等差數(shù)列和一個等比數(shù)列對應(yīng)項的乘積所組成的,求其前n項和.基本方法是設(shè)這個和式為Sn,在這個和式兩端同時乘以等比數(shù)列的公比得到另一個和式,這兩個和式錯一位相減,就把問題轉(zhuǎn)化為以求一個等比數(shù)列的前n項和或前n-1項和為主的求和問題.這里最容易出現(xiàn)問題的就是錯位相減后對剩余項的處理.易錯點9不等式性質(zhì)應(yīng)用不當(dāng)致誤在使用不等式的基本性質(zhì)進行推理論證時一定要準(zhǔn)確,特別是不等式兩端同時乘以或同時除以一個數(shù)式、兩個不等式相乘、一個不等式兩端同時n次方時,一定要注意使其能夠這樣做的條件,如果忽視了不等式性質(zhì)成立的前提條件就會出現(xiàn)錯誤.易錯點10忽視基本不等式應(yīng)用條件致誤利用基本不等式a+b≥2ab以及變式ab≤a+b22等求函數(shù)的最值時,務(wù)必注意a,b為正數(shù)(或a,b非負(fù)),ab或a+b其中之一應(yīng)是定值,特別要注意等號成立的條件.對形如y=ax+bx(a,b>0)的函數(shù),在應(yīng)用基本不等式求函數(shù)最值時,一定要注意ax,bx的符號,必要時要進行分類討論,另外要注意自變量x的取值范圍,在此范圍內(nèi)等號能否取到.高一數(shù)學(xué)知識點易錯點總結(jié)(三)易錯點1解含參數(shù)的不等式時分類討論不當(dāng)致誤解形如ax2+bx+c>0的不等式時,首先要考慮對x2的系數(shù)進行分類討論.當(dāng)a=0時,這個不等式是一次不等式,解的時候還要對b,c進一步分類討論;當(dāng)a≠0且Δ>0時,不等式可化為a(x-x1)(x-x2)>0,其中x1,x2(x10,則不等式的解集是(-∞,x1)∪(x2,+∞),如果a<0,則不等式的解集是(x1,x2).易錯點2不等式恒成立問題處理不當(dāng)致誤解決不等式恒成立問題的常規(guī)求法是:借助相應(yīng)函數(shù)的單調(diào)性求解,其中的主要方法有數(shù)形結(jié)合法、變量分離法、主元法.通過最值產(chǎn)生結(jié)論.應(yīng)注意恒成立與存在性問題的區(qū)別,如對任意x∈[a,b]都有f(x)≤g(x)成立,即f(x)-g(x)≤0的恒成立問題,但對存在x∈[a,b],使f(x)≤g(x)成立,則為存在性問題,即f(x)min≤g(x)max,應(yīng)特別注意兩函數(shù)中的最大值與最小值的關(guān)系.易錯點3忽視三視圖中的實、虛線致誤三視圖是根據(jù)正投影原理進行繪制,嚴(yán)格按照“長對正,高平齊,寬相等”的規(guī)則去畫,若相鄰兩物體的表面相交,表面的交線是它們的原分界線,且分界線和可視輪廓線都用實線畫出,不可見的輪廓線用虛線畫出,這一點很容易疏忽.易錯點4面積、體積的計算轉(zhuǎn)化不靈活致誤面積、體積的計算既需要學(xué)生有扎實的基礎(chǔ)知識,又要用到一些重要的思想方法,是高考考查的重要題型.因此要熟練掌握以下幾種常用的思想方法.(1)還臺為錐的思想:這是處理臺體時常用的思想方法.(2)割補法:求不規(guī)則圖形面積或幾何體體積時常用(3)等積變換法:充分利用三棱錐的任意一個面都可作為底面的特點,靈活求解三棱錐的體積.(4)截面法:尤其是關(guān)于旋轉(zhuǎn)體及與旋轉(zhuǎn)體有關(guān)的組合問題,常畫出軸截面進行分析求解.易錯點5隨意推廣平面幾何中的結(jié)論致誤平面幾何中有些概念和性質(zhì),推廣到空間中不一定成立.例如“過直線外一點只能作一條直線與已知直線垂直”“垂直于同一條直線的兩條直線平行”等性質(zhì)在空間中就不成立.易錯點6對折疊與展開問題認(rèn)識不清致誤折疊與展開是立體幾何中的常用思想方法,此類問題注意折疊或展開過程中平面圖形與空間圖形中的變量與不變量,不僅要注意哪些變了,哪些沒變,還要注意位置關(guān)系的變化.易錯點7空間點、線、面位置關(guān)系不清致誤關(guān)于空間點、線、面位置關(guān)系的組合判斷類試題是高考全面考查考生對空間位置關(guān)系的判定和性質(zhì)掌握程度的理想題型,歷來受到命題者的青睞,解決這類問題的基本思路有兩個:一是逐個尋找反例作出否定的判斷或逐個進行邏輯證明作出肯定的判斷;二是結(jié)合長方體模型或?qū)嶋H空間位置(如課桌、教室)作出判斷,但要注意定理應(yīng)用準(zhǔn)確、考慮問題全面細(xì)致.易錯點8忽視斜率不存在致誤在解決兩直線平行的相關(guān)問題時,若利用l1∥l2?k1=k2來求解,則要注意其前提條件是兩直線不重合且斜率存在.如果忽略k1,k2不存在的情況,就會導(dǎo)致錯解.這類問題也可以利用如下的結(jié)論求解,即直線l1:A1x+B1y+C1=0與l2:A2x+B2y+C2=0平行的必要條件是A1B2-A2B1=0,在求出具體數(shù)值后代入檢驗,看看兩條直線是不是重合從而確定問題的答案.對于解決兩直線垂直的相關(guān)問題時也有類似的情況.利用l1⊥l2?k1·k2=-1時,要注意其前提條件是k1與k2必須同時存在.利用直線l1:A1x+B1y+C1=0與l2:A2x+B2y+C2=0垂直的充要條件是A1A2+B1B2=0,就可以避免討論.易錯點9忽視
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 2025年度融資擔(dān)保合同(風(fēng)險分散)3篇
- 2025年度教育信息化建設(shè)項目招標(biāo)合同(教育創(chuàng)新)3篇
- 用餐拿碗姿勢課程設(shè)計
- 風(fēng)能利用課程設(shè)計
- 高校查詢課程設(shè)計報告
- 飯卡系統(tǒng)課程設(shè)計解讀
- 香熏手工制作課程設(shè)計
- 通信eda軟件課程設(shè)計
- 鳥類思考與討論課程設(shè)計
- 滑步車課程設(shè)計
- 2024-2025學(xué)年成都高新區(qū)七上數(shù)學(xué)期末考試試卷【含答案】
- 定額〔2025〕1號文-關(guān)于發(fā)布2018版電力建設(shè)工程概預(yù)算定額2024年度價格水平調(diào)整的通知
- 2025年浙江杭州市西湖區(qū)專職社區(qū)招聘85人歷年高頻重點提升(共500題)附帶答案詳解
- 《數(shù)學(xué)廣角-優(yōu)化》說課稿-2024-2025學(xué)年四年級上冊數(shù)學(xué)人教版
- “懂你”(原題+解題+范文+話題+技巧+閱讀類素材)-2025年中考語文一輪復(fù)習(xí)之寫作
- 2025年景觀照明項目可行性分析報告
- 2025年江蘇南京地鐵集團招聘筆試參考題庫含答案解析
- 2025年度愛讀書學(xué)長參與的讀書項目投資合同
- 電力系統(tǒng)分析答案(吳俊勇)(已修訂)
- 化學(xué)-河北省金太陽質(zhì)檢聯(lián)盟2024-2025學(xué)年高三上學(xué)期12月第三次聯(lián)考試題和答案
- 期末復(fù)習(xí)試題(試題)-2024-2025學(xué)年四年級上冊數(shù)學(xué) 北師大版
評論
0/150
提交評論