2023學(xué)年四川省成都市新都第一中學(xué)高三考前熱身數(shù)學(xué)試卷(含解析)_第1頁
2023學(xué)年四川省成都市新都第一中學(xué)高三考前熱身數(shù)學(xué)試卷(含解析)_第2頁
2023學(xué)年四川省成都市新都第一中學(xué)高三考前熱身數(shù)學(xué)試卷(含解析)_第3頁
2023學(xué)年四川省成都市新都第一中學(xué)高三考前熱身數(shù)學(xué)試卷(含解析)_第4頁
已閱讀5頁,還剩12頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)

文檔簡介

2023學(xué)年高考數(shù)學(xué)模擬測試卷注意事項:1.答卷前,考生務(wù)必將自己的姓名、準考證號、考場號和座位號填寫在試題卷和答題卡上。用2B鉛筆將試卷類型(B)填涂在答題卡相應(yīng)位置上。將條形碼粘貼在答題卡右上角"條形碼粘貼處"。2.作答選擇題時,選出每小題答案后,用2B鉛筆把答題卡上對應(yīng)題目選項的答案信息點涂黑;如需改動,用橡皮擦干凈后,再選涂其他答案。答案不能答在試題卷上。3.非選擇題必須用黑色字跡的鋼筆或簽字筆作答,答案必須寫在答題卡各題目指定區(qū)域內(nèi)相應(yīng)位置上;如需改動,先劃掉原來的答案,然后再寫上新答案;不準使用鉛筆和涂改液。不按以上要求作答無效。4.考生必須保證答題卡的整潔??荚嚱Y(jié)束后,請將本試卷和答題卡一并交回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.設(shè)、分別是定義在上的奇函數(shù)和偶函數(shù),且,則()A. B.0 C.1 D.32.函數(shù)的大致圖象為()A. B.C. D.3.給甲、乙、丙、丁四人安排泥工、木工、油漆三項工作,每項工作至少一人,每人做且僅做一項工作,甲不能安排木工工作,則不同的安排方法共有()A.12種 B.18種 C.24種 D.64種4.已知函數(shù)在上都存在導(dǎo)函數(shù),對于任意的實數(shù)都有,當(dāng)時,,若,則實數(shù)的取值范圍是()A. B. C. D.5.已知底面為邊長為的正方形,側(cè)棱長為的直四棱柱中,是上底面上的動點.給出以下四個結(jié)論中,正確的個數(shù)是()①與點距離為的點形成一條曲線,則該曲線的長度是;②若面,則與面所成角的正切值取值范圍是;③若,則在該四棱柱六個面上的正投影長度之和的最大值為.A. B. C. D.6.“紋樣”是中國藝術(shù)寶庫的瑰寶,“火紋”是常見的一種傳統(tǒng)紋樣.為了測算某火紋紋樣(如圖陰影部分所示)的面積,作一個邊長為3的正方形將其包含在內(nèi),并向該正方形內(nèi)隨機投擲200個點,己知恰有80個點落在陰影部分據(jù)此可估計陰影部分的面積是()A. B. C.10 D.7.設(shè)函數(shù)在上可導(dǎo),其導(dǎo)函數(shù)為,若函數(shù)在處取得極大值,則函數(shù)的圖象可能是()A. B.C. D.8.tan570°=()A. B.- C. D.9.若兩個非零向量、滿足,且,則與夾角的余弦值為()A. B. C. D.10.若的內(nèi)角滿足,則的值為()A. B. C. D.11.已知向量,且,則等于()A.4 B.3 C.2 D.112.某校8位學(xué)生的本次月考成績恰好都比上一次的月考成績高出50分,則以該8位學(xué)生這兩次的月考成績各自組成樣本,則這兩個樣本不變的數(shù)字特征是()A.方差 B.中位數(shù) C.眾數(shù) D.平均數(shù)二、填空題:本題共4小題,每小題5分,共20分。13.在數(shù)列中,,則數(shù)列的通項公式_____.14.若滿足約束條件,則的最小值是_________,最大值是_________.15.?dāng)?shù)據(jù)的標準差為_____.16.二項式的展開式中所有項的二項式系數(shù)之和是64,則展開式中的常數(shù)項為______.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(12分)已知動點到定點的距離比到軸的距離多.(1)求動點的軌跡的方程;(2)設(shè),是軌跡在上異于原點的兩個不同點,直線和的傾斜角分別為和,當(dāng),變化且時,證明:直線恒過定點,并求出該定點的坐標.18.(12分)已知的內(nèi)角,,的對邊分別為,,,.(1)若,證明:.(2)若,,求的面積.19.(12分)已知的內(nèi)角的對邊分別為,且.(Ⅰ)求;(Ⅱ)若的周長是否有最大值?如果有,求出這個最大值,如果沒有,請說明理由.20.(12分)已知曲線的參數(shù)方程為(為參數(shù)),曲線的參數(shù)方程為(為參數(shù)).(1)求和的普通方程;(2)過坐標原點作直線交曲線于點(異于),交曲線于點,求的最小值.21.(12分)已知分別是內(nèi)角的對邊,滿足(1)求內(nèi)角的大?。?)已知,設(shè)點是外一點,且,求平面四邊形面積的最大值.22.(10分)已知在平面直角坐標系中,曲線的參數(shù)方程為(為參數(shù)),以坐標原點為極點,軸的非負半軸為極軸且取相同的單位長度建立極坐標系,直線的極坐標方程為.(1)求直線的直角坐標方程;(2)求曲線上的點到直線距離的最小值和最大值.

2023學(xué)年模擬測試卷參考答案(含詳細解析)一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、C【答案解析】

先根據(jù)奇偶性,求出的解析式,令,即可求出?!绢}目詳解】因為、分別是定義在上的奇函數(shù)和偶函數(shù),,用替換,得,化簡得,即令,所以,故選C?!敬鸢更c睛】本題主要考查函數(shù)性質(zhì)奇偶性的應(yīng)用。2、A【答案解析】

利用特殊點的坐標代入,排除掉C,D;再由判斷A選項正確.【題目詳解】,排除掉C,D;,,,.故選:A.【答案點睛】本題考查了由函數(shù)解析式判斷函數(shù)的大致圖象問題,代入特殊點,采用排除法求解是解決這類問題的一種常用方法,屬于中檔題.3、C【答案解析】

根據(jù)題意,分2步進行分析:①,將4人分成3組,②,甲不能安排木工工作,甲所在的一組只能安排給泥工或油漆,將剩下的2組全排列,安排其他的2項工作,由分步計數(shù)原理計算可得答案.【題目詳解】解:根據(jù)題意,分2步進行分析:①,將4人分成3組,有種分法;②,甲不能安排木工工作,甲所在的一組只能安排給泥工或油漆,有2種情況,將剩下的2組全排列,安排其他的2項工作,有種情況,此時有種情況,則有種不同的安排方法;故選:C.【答案點睛】本題考查排列、組合的應(yīng)用,涉及分步計數(shù)原理的應(yīng)用,屬于基礎(chǔ)題.4、B【答案解析】

先構(gòu)造函數(shù),再利用函數(shù)奇偶性與單調(diào)性化簡不等式,解得結(jié)果.【題目詳解】令,則當(dāng)時,,又,所以為偶函數(shù),從而等價于,因此選B.【答案點睛】本題考查利用函數(shù)奇偶性與單調(diào)性求解不等式,考查綜合分析求解能力,屬中檔題.5、C【答案解析】

①與點距離為的點形成以為圓心,半徑為的圓弧,利用弧長公式,可得結(jié)論;②當(dāng)在(或時,與面所成角(或的正切值為最小,當(dāng)在時,與面所成角的正切值為最大,可得正切值取值范圍是;③設(shè),,,則,即,可得在前后、左右、上下面上的正投影長,即可求出六個面上的正投影長度之和.【題目詳解】如圖:①錯誤,因為,與點距離為的點形成以為圓心,半徑為的圓弧,長度為;②正確,因為面面,所以點必須在面對角線上運動,當(dāng)在(或)時,與面所成角(或)的正切值為最?。橄碌酌婷鎸蔷€的交點),當(dāng)在時,與面所成角的正切值為最大,所以正切值取值范圍是;③正確,設(shè),則,即,在前后、左右、上下面上的正投影長分別為,,,所以六個面上的正投影長度之,當(dāng)且僅當(dāng)在時取等號.故選:.【答案點睛】本題以命題的真假判斷為載體,考查了軌跡問題、線面角、正投影等知識點,綜合性強,屬于難題.6、D【答案解析】

直接根據(jù)幾何概型公式計算得到答案.【題目詳解】根據(jù)幾何概型:,故.故選:.【答案點睛】本題考查了根據(jù)幾何概型求面積,意在考查學(xué)生的計算能力和應(yīng)用能力.7、B【答案解析】

由題意首先確定導(dǎo)函數(shù)的符號,然后結(jié)合題意確定函數(shù)在區(qū)間和處函數(shù)的特征即可確定函數(shù)圖像.【題目詳解】函數(shù)在上可導(dǎo),其導(dǎo)函數(shù)為,且函數(shù)在處取得極大值,當(dāng)時,;當(dāng)時,;當(dāng)時,.時,,時,,當(dāng)或時,;當(dāng)時,.故選:【答案點睛】根據(jù)函數(shù)取得極大值,判斷導(dǎo)函數(shù)在極值點附近左側(cè)為正,右側(cè)為負,由正負情況討論圖像可能成立的選項,是判斷圖像問題常見方法,有一定難度.8、A【答案解析】

直接利用誘導(dǎo)公式化簡求解即可.【題目詳解】tan570°=tan(360°+210°)=tan210°=tan(180°+30°)=tan30°=.故選:A.【答案點睛】本題考查三角函數(shù)的恒等變換及化簡求值,主要考查誘導(dǎo)公式的應(yīng)用,屬于基礎(chǔ)題.9、A【答案解析】

設(shè)平面向量與的夾角為,由已知條件得出,在等式兩邊平方,利用平面向量數(shù)量積的運算律可求得的值,即為所求.【題目詳解】設(shè)平面向量與的夾角為,,可得,在等式兩邊平方得,化簡得.故選:A.【答案點睛】本題考查利用平面向量的模求夾角的余弦值,考查平面向量數(shù)量積的運算性質(zhì)的應(yīng)用,考查計算能力,屬于中等題.10、A【答案解析】

由,得到,得出,再結(jié)合三角函數(shù)的基本關(guān)系式,即可求解.【題目詳解】由題意,角滿足,則,又由角A是三角形的內(nèi)角,所以,所以,因為,所以.故選:A.【答案點睛】本題主要考查了正弦函數(shù)的性質(zhì),以及三角函數(shù)的基本關(guān)系式和正弦的倍角公式的化簡、求值問題,著重考查了推理與計算能力.11、D【答案解析】

由已知結(jié)合向量垂直的坐標表示即可求解.【題目詳解】因為,且,,則.故選:.【答案點睛】本題主要考查了向量垂直的坐標表示,意在考查學(xué)生對這些知識的理解掌握水平,屬于基礎(chǔ)題.12、A【答案解析】

通過方差公式分析可知方差沒有改變,中位數(shù)、眾數(shù)和平均數(shù)都發(fā)生了改變.【題目詳解】由題可知,中位數(shù)和眾數(shù)、平均數(shù)都有變化.本次和上次的月考成績相比,成績和平均數(shù)都增加了50,所以沒有改變,根據(jù)方差公式可知方差不變.故選:A【答案點睛】本題主要考查樣本的數(shù)字特征,意在考查學(xué)生對這些知識的理解掌握水平.二、填空題:本題共4小題,每小題5分,共20分。13、【答案解析】

由題意可得,又,數(shù)列的奇數(shù)項為首項為1,公差為2的等差數(shù)列,對分奇數(shù)和偶數(shù)兩種情況,分別求出,從而得到數(shù)列的通項公式.【題目詳解】解:∵,∴①,②,①﹣②得:,又∵,∴數(shù)列的奇數(shù)項為首項為1,公差為2的等差數(shù)列,∴當(dāng)為奇數(shù)時,,當(dāng)為偶數(shù)時,則為奇數(shù),∴,∴數(shù)列的通項公式,故答案為:.【答案點睛】本題考查求數(shù)列的通項公式,解題關(guān)鍵是由已知遞推關(guān)系得出,從而確定數(shù)列的奇數(shù)項成等差數(shù)列,求出通項公式后再由已知求出偶數(shù)項,要注意結(jié)果是分段函數(shù)形式.14、06【答案解析】

作不等式組對應(yīng)的平面區(qū)域,利用目標函數(shù)的幾何意義,即可求出結(jié)果.【題目詳解】作出可行域,如圖中的陰影部分:求的最值,即求直線在軸上的截距最小和最大時,當(dāng)直線過點時,軸上截距最大,即z取最小值,.當(dāng)直線過點時,軸上截距最小,即z取最大值,.故答案為:0;6.【答案點睛】本題主要考查了線性規(guī)劃中的最值問題,利用數(shù)形結(jié)合是解決問題的基本方法,屬于中檔題.15、【答案解析】

先計算平均數(shù)再求解方差與標準差即可.【題目詳解】解:樣本的平均數(shù),這組數(shù)據(jù)的方差是標準差,故答案為:【答案點睛】本題主要考查了標準差的計算,屬于基礎(chǔ)題.16、【答案解析】

由二項式系數(shù)性質(zhì)求出,由二項展開式通項公式得出常數(shù)項的項數(shù),從而得常數(shù)項.【題目詳解】由題意,.展開式通項為,由得,∴常數(shù)項為.故答案為:.【答案點睛】本題考查二項式定理,考查二項式系數(shù)的性質(zhì),掌握二項展開式通項公式是解題關(guān)鍵.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17、(1)或;(2)證明見解析,定點【答案解析】

(1)設(shè),由題意可知,對的正負分情況討論,從而求得動點的軌跡的方程;(2)設(shè)其方程為,與拋物線方程聯(lián)立,利用韋達定理得到,所以,所以直線的方程可表示為,即,所以直線恒過定點.【題目詳解】(1)設(shè),動點到定點的距離比到軸的距離多,,時,解得,時,解得.動點的軌跡的方程為或(2)證明:如圖,設(shè),,由題意得(否則)且,所以直線的斜率存在,設(shè)其方程為,將與聯(lián)立消去,得,由韋達定理知,,①顯然,,,,將①式代入上式整理化簡可得:,所以,此時,直線的方程可表示為,即,所以直線恒過定點.【答案點睛】本題主要考查了動點軌跡,考查了直線與拋物線的綜合,是中檔題.18、(1)見解析(2)【答案解析】

(1)由余弦定理及已知等式得出關(guān)系,再由正弦定理可得結(jié)論;(2)由余弦定理和已知條件解得,然后由面積公式計算.【題目詳解】解:(1)由余弦定理得,由得到,由正弦定理得.因為,,所以.(2)由題意及余弦定理可知,①由得,即,②聯(lián)立①②解得,.所以.【答案點睛】本題考查利用正余弦定理解三角形.考查三角形面積公式,由已知條件本題主要是應(yīng)用余弦定理求出邊.解題時要注意對條件的分析,確定選用的公式.19、(Ⅰ);(Ⅱ)有最大值,最大值為3.【答案解析】

(Ⅰ)利用正弦定理將角化邊,再由余弦定理計算可得;(Ⅱ)由正弦定理可得,則,再根據(jù)正弦函數(shù)的性質(zhì)計算可得;【題目詳解】(Ⅰ)由得再由正弦定理得因此,又因為,所以.(Ⅱ)當(dāng)時,的周長有最大值,且最大值為3,理由如下:由正弦定理得,所以,所以.因為,所以,所以當(dāng)即時,取到最大值2,所以的周長有最大值,最大值為3.【答案點睛】本題考查正弦定理、余弦定理解三角形,以及三角函數(shù)的性質(zhì)的應(yīng)用,屬于中檔題.20、(1)曲線的普通方程為:;曲線的普通方程為:(2)【答案解析】

(1)消去曲線參數(shù)方程中的參數(shù),求得和的普通方程.(2)設(shè)出過原點的直線的極坐標方程,代入曲線的極坐標方程,求得的表達式,結(jié)合三角函數(shù)值域的求法,求得的最小值.【題目詳解】(1)曲線的普通方程為:;曲線的普通方程為:.(2)設(shè)過原點的直線的極坐標方程為;由得,所以曲線的極坐標方程為在曲線中,.由得曲線的極坐標方程為,所以而到直線與曲線的交點的距離為,因此,即的最小值為.【答案點睛】本小題主要考查參數(shù)方程化為普通方程,考查直角坐標方程化為極坐標方程,考查極坐標系下距離的有關(guān)計算,屬于中檔題.21、(1)(2)【答案解析】

(1)首先利用誘導(dǎo)公式及兩角和的余弦公式得到,再由同角三角三角的基本關(guān)系得到,即可求出角;(2)由(1)知,是正三角形,設(shè),由余弦定理可得:,則,得到,再利用輔助角公式化簡,最后由正弦函數(shù)的性質(zhì)求得最大值;【題目詳解】解:(1)由,,,,,,,;(2)由(1)知,是正三角形,設(shè),由余弦定理得:,,,

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論