




版權(quán)說(shuō)明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡(jiǎn)介
專題28體積法求點(diǎn)面距離一、多選題1.在正方體ABCD-A1B1C1D1中,E,F(xiàn),G分別為BC,CC1,BB1的中點(diǎn),則()A.D1D⊥AFB.A1G∥平面AEFC.異面直線A1G與EF所成角的余弦值為SKIPIF1<0D.點(diǎn)G到平面AEF的距離是點(diǎn)C到平面AEF的距離的2倍【答案】BCD【分析】利用正方體的性質(zhì),平移異面直線得到它們的平面角進(jìn)而證D1D、AF是否垂直及求直線A1G與EF所成角的余弦值即可,利用等體積法可求G到平面AEF的距離與點(diǎn)C到平面AEF的距離的數(shù)量關(guān)系,利用線面平行的判定即可判斷A1G、平面AEF是否平行.【詳解】A選項(xiàng),由SKIPIF1<0,即SKIPIF1<0與SKIPIF1<0并不垂直,所以D1D⊥AF錯(cuò)誤.B選項(xiàng),如下圖,延長(zhǎng)FE、GB交于G’連接AG’、GF,有GF//BE又E,F(xiàn),G分別為BC,CC1,BB1的中點(diǎn),所以SKIPIF1<0,而SKIPIF1<0,即SKIPIF1<0;又因?yàn)槊鍿KIPIF1<0SKIPIF1<0面SKIPIF1<0=SKIPIF1<0,且SKIPIF1<0面SKIPIF1<0,SKIPIF1<0面SKIPIF1<0,所以A1G∥平面AEF,故正確.C選項(xiàng),取SKIPIF1<0中點(diǎn)SKIPIF1<0,連接SKIPIF1<0,由題意知SKIPIF1<0與SKIPIF1<0平行且相等,所以異面直線A1G與EF所成角的平面角為SKIPIF1<0,若正方體棱長(zhǎng)為2,則有SKIPIF1<0,即在SKIPIF1<0中有SKIPIF1<0,故正確.D選項(xiàng),如下圖若設(shè)G到平面AEF的距離、C到平面AEF的距離分別為SKIPIF1<0、SKIPIF1<0,則由SKIPIF1<0且SKIPIF1<0,知SKIPIF1<0,故正確.故選:BCD【點(diǎn)睛】思路點(diǎn)睛:求異面直線所成角時(shí)平移線段,將它們置于同一個(gè)平面,而證明線面平行主要應(yīng)用線面平行的判定、線面垂直的性質(zhì)證明.1、平移:將異面直線置于同一平面且有一個(gè)公共點(diǎn),結(jié)合其角度范圍為SKIPIF1<0.2、線面平行判定:由直線平行該直線所在的一平面與對(duì)應(yīng)平面的交線即可證線面平行.3、由SKIPIF1<0、SKIPIF1<0即可求G、C到平面AEF的距離比.2.在正方體SKIPIF1<0中,SKIPIF1<0,SKIPIF1<0、SKIPIF1<0分別為SKIPIF1<0、SKIPIF1<0中點(diǎn),SKIPIF1<0是SKIPIF1<0上的動(dòng)點(diǎn),則下列說(shuō)法正確的有()A.SKIPIF1<0B.三棱錐SKIPIF1<0的體積與點(diǎn)SKIPIF1<0位置有關(guān)系C.平面SKIPIF1<0截正方體SKIPIF1<0的截面面積為SKIPIF1<0D.點(diǎn)SKIPIF1<0到平面SKIPIF1<0的距離為SKIPIF1<0【答案】AC【分析】A選項(xiàng),取SKIPIF1<0中點(diǎn)為SKIPIF1<0,根連接SKIPIF1<0,SKIPIF1<0,記SKIPIF1<0與SKIPIF1<0交點(diǎn)為SKIPIF1<0,根據(jù)線面垂直的判定定理,可得SKIPIF1<0平面SKIPIF1<0,進(jìn)而可得SKIPIF1<0;B選項(xiàng),證明SKIPIF1<0平面SKIPIF1<0,即可判定B錯(cuò);C選項(xiàng),補(bǔ)全截面,得到平面SKIPIF1<0截正方體SKIPIF1<0所得的截面為等腰梯形,進(jìn)而可根據(jù)題中條件,求出截面面積;D選項(xiàng),根據(jù)等體積法,由SKIPIF1<0求出點(diǎn)到面積的距離,即可判定;【詳解】A選項(xiàng),取SKIPIF1<0中點(diǎn)為SKIPIF1<0,根連接SKIPIF1<0,SKIPIF1<0,記SKIPIF1<0與SKIPIF1<0交點(diǎn)為SKIPIF1<0,在正方體SKIPIF1<0中,SKIPIF1<0,SKIPIF1<0,因?yàn)镾KIPIF1<0、SKIPIF1<0分別為SKIPIF1<0、SKIPIF1<0中點(diǎn),所以SKIPIF1<0,SKIPIF1<0,因此SKIPIF1<0,所以SKIPIF1<0,SKIPIF1<0,因此SKIPIF1<0,因此SKIPIF1<0,即SKIPIF1<0;又在正方體SKIPIF1<0中,SKIPIF1<0平面SKIPIF1<0,所以SKIPIF1<0平面SKIPIF1<0,因SKIPIF1<0平面SKIPIF1<0,所以SKIPIF1<0,又SKIPIF1<0,SKIPIF1<0平面SKIPIF1<0,SKIPIF1<0平面SKIPIF1<0,所以SKIPIF1<0平面SKIPIF1<0,因?yàn)镾KIPIF1<0平面SKIPIF1<0,所以SKIPIF1<0;故A正確;B選項(xiàng),因?yàn)樵谡襟w中SKIPIF1<0,且SKIPIF1<0,所以四邊形SKIPIF1<0為平行四邊形,因此SKIPIF1<0,又SKIPIF1<0平面SKIPIF1<0,SKIPIF1<0平面SKIPIF1<0,所以SKIPIF1<0平面SKIPIF1<0,因此棱SKIPIF1<0上的所有點(diǎn)到平面SKIPIF1<0的距離都相等,又SKIPIF1<0是棱SKIPIF1<0上的動(dòng)點(diǎn),所以三棱錐SKIPIF1<0的體積始終為定值;故B錯(cuò);C選項(xiàng),取SKIPIF1<0的中點(diǎn)為SKIPIF1<0,連接SKIPIF1<0,SKIPIF1<0,則SKIPIF1<0,且SKIPIF1<0,則SKIPIF1<0;又正方體中,SKIPIF1<0,所以SKIPIF1<0,SKIPIF1<0,因此SKIPIF1<0,所以平面SKIPIF1<0截正方體SKIPIF1<0所得的截面為等腰梯形SKIPIF1<0,因此該等腰梯形的高為SKIPIF1<0,所以該截面的面積為SKIPIF1<0;故C正確;D選項(xiàng),設(shè)點(diǎn)SKIPIF1<0到平面SKIPIF1<0的距離為SKIPIF1<0,因?yàn)镾KIPIF1<0平面SKIPIF1<0,所以點(diǎn)SKIPIF1<0到平面SKIPIF1<0的距離為SKIPIF1<0,即點(diǎn)SKIPIF1<0到平面SKIPIF1<0的距離為SKIPIF1<0,所以SKIPIF1<0,在SKIPIF1<0中,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,所以SKIPIF1<0,因此SKIPIF1<0,所以SKIPIF1<0.又SKIPIF1<0,所以SKIPIF1<0,即點(diǎn)SKIPIF1<0到平面SKIPIF1<0的距離為SKIPIF1<0,故D錯(cuò);故選:AC.【點(diǎn)睛】方法點(diǎn)睛:求空間中點(diǎn)到面積的距離的常用方法:(1)等體積法:先設(shè)所求點(diǎn)到面的距離,再通過(guò)題中條件,求出該幾何體的體積,利用同一幾何體的體積相等,列出方程,即可求出結(jié)果;(2)向量法:利用空間向量的方法,先求出所求點(diǎn)與平面內(nèi)任意一點(diǎn)連線的方向向量,以及平面的法向量,根據(jù)向量法求點(diǎn)到面距離的公式,即可求出結(jié)果.3.已知三棱錐SKIPIF1<0中,SKIPIF1<0為SKIPIF1<0中點(diǎn),SKIPIF1<0平面SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,則下列說(shuō)法中正確的是()A.若SKIPIF1<0為SKIPIF1<0的外心,則SKIPIF1<0B.若SKIPIF1<0為等邊三角形,則SKIPIF1<0C.當(dāng)SKIPIF1<0時(shí),SKIPIF1<0與平面SKIPIF1<0所成角的范圍為SKIPIF1<0D.當(dāng)SKIPIF1<0時(shí),SKIPIF1<0為平面SKIPIF1<0內(nèi)動(dòng)點(diǎn),若SKIPIF1<0平面SKIPIF1<0,則SKIPIF1<0在三角形SKIPIF1<0內(nèi)的軌跡長(zhǎng)度為SKIPIF1<0【答案】ACD【分析】由線面垂直的性質(zhì),結(jié)合勾股定理可判斷A正確;反證法由線面垂直的判斷和性質(zhì)可判斷B錯(cuò)誤;由線面角的定義和轉(zhuǎn)化為三棱錐的體積,求得C到平面PAB的距離的范圍,可判斷C正確;由面面平行的性質(zhì)定理可得線面平行,可得D正確.【詳解】依題意,畫圖如下:若SKIPIF1<0為SKIPIF1<0的外心,則SKIPIF1<0,SKIPIF1<0平面SKIPIF1<0,可得SKIPIF1<0,SKIPIF1<0,故SKIPIF1<0,A正確;SKIPIF1<0若為等邊三角形,SKIPIF1<0,又SKIPIF1<0,BC與PB相交于平面SKIPIF1<0內(nèi),可得SKIPIF1<0平面SKIPIF1<0,即SKIPIF1<0,由SKIPIF1<0,SKIPIF1<0,可得SKIPIF1<0,故SKIPIF1<0,矛盾,B錯(cuò)誤;若SKIPIF1<0,設(shè)SKIPIF1<0與平面SKIPIF1<0所成角為SKIPIF1<0,由A正確,知SKIPIF1<0,設(shè)SKIPIF1<0到平面SKIPIF1<0的距離為SKIPIF1<0由SKIPIF1<0可得SKIPIF1<0即有SKIPIF1<0,當(dāng)且僅當(dāng)SKIPIF1<0取等號(hào).可得SKIPIF1<0的最大值為SKIPIF1<0,SKIPIF1<0,即SKIPIF1<0的范圍為SKIPIF1<0,C正確;取SKIPIF1<0中點(diǎn)SKIPIF1<0,SKIPIF1<0的中點(diǎn)SKIPIF1<0,連接SKIPIF1<0由中位線定理可得,SKIPIF1<0,SKIPIF1<0,則平面SKIPIF1<0平面SKIPIF1<0,由SKIPIF1<0平面SKIPIF1<0,可得SKIPIF1<0在線段SKIPIF1<0上,即軌跡SKIPIF1<0,可得D正確;故選:ACD【點(diǎn)睛】本題考查了立體幾何中與點(diǎn)、線、面位置關(guān)系有關(guān)的命題的真假判斷,屬于中檔題.處理立體幾何中真假命題判定的問(wèn)題,可以用已知的定理或性質(zhì)來(lái)證明,也可以用反證法來(lái)說(shuō)明命題的不成立.二、單選題4.如圖,在正方體SKIPIF1<0中,棱長(zhǎng)為1,SKIPIF1<0分別為SKIPIF1<0與SKIPIF1<0的中點(diǎn),SKIPIF1<0到平面SKIPIF1<0的距離為()
A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<0【答案】B【分析】設(shè)點(diǎn)SKIPIF1<0到平面SKIPIF1<0的距離為SKIPIF1<0,利用SKIPIF1<0建立方程可求解.【詳解】設(shè)點(diǎn)SKIPIF1<0到平面SKIPIF1<0的距離為SKIPIF1<0.∵正方體棱長(zhǎng)為1,∴SKIPIF1<0,∴SKIPIF1<0又SKIPIF1<0,∴SKIPIF1<0,解得SKIPIF1<0即點(diǎn)SKIPIF1<0到平面SKIPIF1<0的距離為SKIPIF1<0.故選:B.【點(diǎn)睛】方法點(diǎn)睛:在空間中求點(diǎn)到面的距離時(shí)可利用空間向量進(jìn)行求解,即將距離問(wèn)題轉(zhuǎn)化為向量的運(yùn)算問(wèn)題處理.另外也可利用等積法求解,解題時(shí)可將所求的距離看作是一個(gè)三棱錐的高,求出其體積后;將此三棱錐的底面和對(duì)應(yīng)的高改換,再次求出其體積.然后利用同一個(gè)三棱錐的體積相等建立關(guān)于所求高為未知數(shù)的等式,解方程求出未知數(shù)即可得到所求的高.5.如圖,正方體SKIPIF1<0的棱長(zhǎng)為1,線段SKIPIF1<0上有兩個(gè)動(dòng)點(diǎn)SKIPIF1<0,且SKIPIF1<0,給出下列四個(gè)結(jié)論錯(cuò)誤的選項(xiàng)是()A.SKIPIF1<0B.點(diǎn)SKIPIF1<0到平面SKIPIF1<0的距離為SKIPIF1<0C.SKIPIF1<0在底面SKIPIF1<0內(nèi)的正投影是面積不是定值的三角形D.在平面SKIPIF1<0內(nèi)存在無(wú)數(shù)條與平面SKIPIF1<0平行的直線【答案】C【分析】利用SKIPIF1<0平面SKIPIF1<0,即可證明SKIPIF1<0,即可判斷選項(xiàng)A;利用等體積即可求點(diǎn)SKIPIF1<0到平面SKIPIF1<0的距離,即可判斷選項(xiàng)B;利用正投影特點(diǎn)即可判斷選項(xiàng)C;利用線面平行的性質(zhì)定理即可判斷選項(xiàng)D.【詳解】對(duì)于選項(xiàng)A:由SKIPIF1<0且SKIPIF1<0,SKIPIF1<0,所以SKIPIF1<0平面SKIPIF1<0,因?yàn)镾KIPIF1<0平面SKIPIF1<0,可得SKIPIF1<0,故選項(xiàng)A正確;對(duì)于選項(xiàng)B:因?yàn)辄c(diǎn)SKIPIF1<0到直線SKIPIF1<0的距離是SKIPIF1<0,SKIPIF1<0,所以SKIPIF1<0為定值,點(diǎn)SKIPIF1<0到平面SKIPIF1<0距離是SKIPIF1<0,所以三棱SKIPIF1<0體積是SKIPIF1<0,因?yàn)槿忮FSKIPIF1<0,SKIPIF1<0為,所以點(diǎn)SKIPIF1<0到平面SKIPIF1<0的距離為SKIPIF1<0,故選項(xiàng)B正確;對(duì)于選項(xiàng)C:線段SKIPIF1<0在底面SKIPIF1<0內(nèi)的正投影是SKIPIF1<0,所以SKIPIF1<0在底面SKIPIF1<0內(nèi)的正投影是SKIPIF1<0,因?yàn)榫€段SKIPIF1<0的長(zhǎng)是定值,所以線段SKIPIF1<0的長(zhǎng)也是定值,所以SKIPIF1<0的面積是定值,故選項(xiàng)C不正確;多于選項(xiàng)D:設(shè)平面SKIPIF1<0與平面SKIPIF1<0的交線為SKIPIF1<0,則在平面SKIPIF1<0內(nèi)與直線SKIPIF1<0平行的直線有無(wú)數(shù)條,故選項(xiàng)D正確,故選:C【點(diǎn)睛】方法點(diǎn)睛:求點(diǎn)到平面的距離,通常采用三棱錐等體積,轉(zhuǎn)化為棱錐的高,也可以采用空間向量的方法求出線面角以及斜線的的長(zhǎng)度,也可求點(diǎn)到面的距離.6.正三棱柱SKIPIF1<0的所有定點(diǎn)均在表面積為SKIPIF1<0的球SKIPIF1<0的球面上,SKIPIF1<0,則SKIPIF1<0到平面SKIPIF1<0的距離為()A.1 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<0【答案】B【分析】根據(jù)球的表面積求得球的半徑,由此求得側(cè)棱SKIPIF1<0的長(zhǎng),利用等體積法求得SKIPIF1<0到平面SKIPIF1<0的距離.【詳解】設(shè)等邊三角形SKIPIF1<0的外接圓半徑為SKIPIF1<0,由正弦定理得SKIPIF1<0.由于球SKIPIF1<0的表面積為SKIPIF1<0,故半徑SKIPIF1<0,所以側(cè)棱長(zhǎng)SKIPIF1<0.在三角形SKIPIF1<0中,SKIPIF1<0,而SKIPIF1<0,所以三角形SKIPIF1<0的面積為SKIPIF1<0.設(shè)SKIPIF1<0到平面SKIPIF1<0的距離為SKIPIF1<0,由SKIPIF1<0得SKIPIF1<0,解得SKIPIF1<0.故選:B【點(diǎn)睛】本小題主要考查幾何體外接球有關(guān)計(jì)算,考查等體積法求點(diǎn)面距離,屬于基礎(chǔ)題.7.如圖,正四棱錐SKIPIF1<0的高為SKIPIF1<0,且底面邊長(zhǎng)也為SKIPIF1<0,則點(diǎn)SKIPIF1<0到平面SKIPIF1<0的距離為()A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<0【答案】A【分析】結(jié)合正四棱錐的性質(zhì),利用SKIPIF1<0,代入數(shù)據(jù)直接計(jì)算即可.【詳解】解:由正四棱錐的性質(zhì)可知,其底面SKIPIF1<0為正方形,連接SKIPIF1<0、SKIPIF1<0,設(shè)交點(diǎn)為點(diǎn)SKIPIF1<0,連接SKIPIF1<0,則SKIPIF1<0平面SKIPIF1<0,且SKIPIF1<0,底面對(duì)角線的長(zhǎng)度為SKIPIF1<0SKIPIF1<0,側(cè)棱長(zhǎng)度為SKIPIF1<0SKIPIF1<0,斜高SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,設(shè)點(diǎn)SKIPIF1<0到平面SKIPIF1<0的距離為SKIPIF1<0,由SKIPIF1<0,即SKIPIF1<0,解得SKIPIF1<0.故選:A.【點(diǎn)睛】本題考查求點(diǎn)到平面的距離,考查正四棱錐的性質(zhì)與棱錐的體積.掌握正棱錐的計(jì)算是解題關(guān)鍵.8.已知在正四棱柱SKIPIF1<0中,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0為SKIPIF1<0的中點(diǎn),則點(diǎn)SKIPIF1<0與平面SKIPIF1<0的距離為()A.2 B.SKIPIF1<0 C.SKIPIF1<0 D.1【答案】D【分析】先證直線SKIPIF1<0與平面SKIPIF1<0平行,將線面距離轉(zhuǎn)化為點(diǎn)面距離,結(jié)合三棱錐體積公式,由等積性求出點(diǎn)面距離即可.【詳解】如圖所示,連接SKIPIF1<0交SKIPIF1<0于SKIPIF1<0點(diǎn),SKIPIF1<0為SKIPIF1<0的中點(diǎn),SKIPIF1<0,又SKIPIF1<0平面SKIPIF1<0,SKIPIF1<0平面SKIPIF1<0SKIPIF1<0平面SKIPIF1<0,即直線SKIPIF1<0與平面SKIPIF1<0的距離為點(diǎn)SKIPIF1<0到平面SKIPIF1<0的距離,設(shè)為SKIPIF1<0.在三棱錐SKIPIF1<0中,SKIPIF1<0,在三棱錐SKIPIF1<0中,SKIPIF1<0,所以SKIPIF1<0,解得SKIPIF1<0故選:D.【點(diǎn)睛】本題考查了線面距離,考查了轉(zhuǎn)化思想,考查了三棱錐的體積應(yīng)用,考查了數(shù)學(xué)運(yùn)算能力.9.直三棱柱SKIPIF1<0的側(cè)棱SKIPIF1<0,底面SKIPIF1<0中,SKIPIF1<0,SKIPIF1<0,則點(diǎn)SKIPIF1<0到平面SKIPIF1<0的距離為()A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<0【答案】D【分析】利用SKIPIF1<0即可求解.【詳解】因?yàn)槿庵鵖KIPIF1<0是直三棱錐,所以SKIPIF1<0平面SKIPIF1<0,所以SKIPIF1<0,又因?yàn)镾KIPIF1<0,所以SKIPIF1<0,因?yàn)镾KIPIF1<0,所以SKIPIF1<0平面SKIPIF1<0,所以SKIPIF1<0,因?yàn)镾KIPIF1<0,SKIPIF1<0,SKIPIF1<0,所以SKIPIF1<0平面SKIPIF1<0,所以SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,設(shè)點(diǎn)SKIPIF1<0到平面SKIPIF1<0的距離為SKIPIF1<0,則SKIPIF1<0,即SKIPIF1<0,所以SKIPIF1<0,所以點(diǎn)SKIPIF1<0到平面SKIPIF1<0的距離為SKIPIF1<0,故選:D【點(diǎn)睛】本題主要考查了利用三棱錐體積相等求點(diǎn)到面的距離,屬于中檔題.10.已知正方體SKIPIF1<0的棱長(zhǎng)為1,給出下列四個(gè)命題:①對(duì)角線SKIPIF1<0被平面SKIPIF1<0和平面SKIPIF1<0、三等分;②正方體的內(nèi)切球、與各條棱相切的球、正方體的外接球的表面積之比為SKIPIF1<0;③以正方體的頂點(diǎn)為頂點(diǎn)的四面體的體積都是SKIPIF1<0;④正方體與以SKIPIF1<0為球心,1為半徑的球的公共部分的體積是SKIPIF1<0.其中正確的序號(hào)是()A.①② B.②④ C.①②③ D.①②④【答案】D【分析】對(duì)①,畫出圖象,設(shè)對(duì)角線SKIPIF1<0與平面SKIPIF1<0相交于點(diǎn)SKIPIF1<0,則SKIPIF1<0平面SKIPIF1<0,用等體積的方法計(jì)算出SKIPIF1<0,從而證得SKIPIF1<0被平面SKIPIF1<0和平面SKIPIF1<0三等分;對(duì)②,計(jì)算正方體的內(nèi)切球、與各條棱相切的球、正方體的外接球的半徑,再計(jì)算其表面積之比;對(duì)③,顯然SKIPIF1<0SKIPIF1<0SKIPIF1<0;對(duì)④,正方體與以SKIPIF1<0為球心,1為半徑的球的公共部分是球的SKIPIF1<0.【詳解】①如圖所示,假設(shè)對(duì)角線SKIPIF1<0與平面SKIPIF1<0相交于點(diǎn)SKIPIF1<0,
可得SKIPIF1<0平面SKIPIF1<0,所以SKIPIF1<0,解得SKIPIF1<0,因此對(duì)角線SKIPIF1<0被平面SKIPIF1<0和平面SKIPIF1<0三等分,正確;②易得正方體的內(nèi)切球、與各條棱相切的球、正方體的外接球的半徑分別為SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,因此表面積之比為SKIPIF1<0,正確;③SKIPIF1<0SKIPIF1<0SKIPIF1<0,不正確;④正方體與以SKIPIF1<0為球心,1為半徑的球的公共部分的體積SKIPIF1<0,正確,故選:D.【點(diǎn)睛】本題考查了立體幾何綜合問(wèn)題,正方體的內(nèi)切球、與各條棱相切的球、正方體的外接球的半徑與正方體邊長(zhǎng)的關(guān)系,考查了學(xué)生空間想象能力,分析推理能力,運(yùn)算能力,屬于中檔題.11.如圖,在正四棱柱SKIPIF1<0中,SKIPIF1<0,則點(diǎn)SKIPIF1<0到平面SKIPIF1<0的距離為()A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<0【答案】B【分析】結(jié)合余弦定理、三角形面積公式、棱錐得體積公式,利用等體積法SKIPIF1<0,即可求出答案.【詳解】解:設(shè)點(diǎn)SKIPIF1<0到平面SKIPIF1<0的距離為SKIPIF1<0,∵SKIPIF1<0,由題意,SKIPIF1<0的面積SKIPIF1<0,在SKIPIF1<0中,易求得SKIPIF1<0,SKIPIF1<0,∴由余弦定理得SKIPIF1<0,∴SKIPIF1<0,∴SKIPIF1<0SKIPIF1<0,又SKIPIF1<0,即SKIPIF1<0,∴SKIPIF1<0,故選:B.【點(diǎn)睛】本題主要考查等體積法求點(diǎn)到平面的距離,考查轉(zhuǎn)化與化歸思想,屬于中檔題.三、解答題12.已知四棱錐SKIPIF1<0中,底面SKIPIF1<0為矩形,平面SKIPIF1<0平面SKIPIF1<0,平面SKIPIF1<0平面SKIPIF1<0.(1)求證:SKIPIF1<0平面SKIPIF1<0;(2)若SKIPIF1<0,求點(diǎn)SKIPIF1<0到平面SKIPIF1<0的距離.【答案】(1)證明見(jiàn)解析;(2)SKIPIF1<0.【分析】(1)由平面SKIPIF1<0平面SKIPIF1<0,SKIPIF1<0,可得SKIPIF1<0平面SKIPIF1<0,從而得SKIPIF1<0,同理可得SKIPIF1<0,再由線面垂直的判定定理可證得結(jié)論;(2)由(1)得SKIPIF1<0,SKIPIF1<0,進(jìn)而可求出SKIPIF1<0,SKIPIF1<0,從而可得SKIPIF1<0,再利用等體積法可求出點(diǎn)SKIPIF1<0到平面SKIPIF1<0的距離【詳解】(1)平面SKIPIF1<0平面SKIPIF1<0,SKIPIF1<0,所以SKIPIF1<0平面SKIPIF1<0,故SKIPIF1<0.同理,平面SKIPIF1<0平面SKIPIF1<0,SKIPIF1<0,所以SKIPIF1<0平面SKIPIF1<0,故SKIPIF1<0.故SKIPIF1<0平面SKIPIF1<0.(2)由(1)可知,SKIPIF1<0,SKIPIF1<0,由SKIPIF1<0可求得,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0.SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0.三棱錐SKIPIF1<0的體積SKIPIF1<0.設(shè)SKIPIF1<0為點(diǎn)SKIPIF1<0到平面SKIPIF1<0的距離,則SKIPIF1<0,所以得SKIPIF1<0,故SKIPIF1<0.所以點(diǎn)SKIPIF1<0到平面SKIPIF1<0的距離為SKIPIF1<0.【點(diǎn)睛】關(guān)鍵點(diǎn)點(diǎn)睛:此題考查線面垂直的判定,考查點(diǎn)到面的距離的求法,解題的關(guān)鍵是利用等體積法進(jìn)行轉(zhuǎn)化,從而可得結(jié)果,考查轉(zhuǎn)化思想和計(jì)算能力,屬于中檔題13.在多面體SKIPIF1<0中,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,平面SKIPIF1<0平面SKIPIF1<0.(1)證明:SKIPIF1<0;(2)求直線SKIPIF1<0與平面SKIPIF1<0所成角的正弦值.【答案】(1)證明見(jiàn)解析;(2)SKIPIF1<0.【分析】(1)連接SKIPIF1<0,通過(guò)SKIPIF1<0和SKIPIF1<0證明SKIPIF1<0平面SKIPIF1<0,即得SKIPIF1<0,再由SKIPIF1<0得SKIPIF1<0;(2)過(guò)SKIPIF1<0點(diǎn)作SKIPIF1<0交SKIPIF1<0的延長(zhǎng)線于SKIPIF1<0,連接SKIPIF1<0,根據(jù)等體積法求出點(diǎn)B到平面DCE的距離,即可求出直線SKIPIF1<0與平面SKIPIF1<0所成角的正弦值.【詳解】解:(1)連接SKIPIF1<0,在SKIPIF1<0中,SKIPIF1<0,則SKIPIF1<0,所以,SKIPIF1<0,即SKIPIF1<0,SKIPIF1<0,又因?yàn)槠矫鍿KIPIF1<0平面SKIPIF1<0,平面SKIPIF1<0平面SKIPIF1<0,且SKIPIF1<0,所以SKIPIF1<0平面SKIPIF1<0,因?yàn)镾KIPIF1<0平面SKIPIF1<0,所以SKIPIF1<0,由SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,且SKIPIF1<0,SKIPIF1<0平面SKIPIF1<0,所以有SKIPIF1<0平面SKIPIF1<0,因?yàn)镾KIPIF1<0平面SKIPIF1<0,所以SKIPIF1<0,又因?yàn)镾KIPIF1<0,所以SKIPIF1<0.(2)過(guò)SKIPIF1<0點(diǎn)作SKIPIF1<0交SKIPIF1<0的延長(zhǎng)線于SKIPIF1<0,連接SKIPIF1<0,
∵SKIPIF1<0,SKIPIF1<0,∴SKIPIF1<0,由SKIPIF1<0,可得:SKIPIF1<0,SKIPIF1<0,∵SKIPIF1<0,SKIPIF1<0,∴SKIPIF1<0,∵平面SKIPIF1<0平面SKIPIF1<0,面SKIPIF1<0面SKIPIF1<0,SKIPIF1<0,∴SKIPIF1<0面SKIPIF1<0,又∵SKIPIF1<0平面SKIPIF1<0,∴SKIPIF1<0,∴SKIPIF1<0,∴SKIPIF1<0,∴SKIPIF1<0,由(1)可知,SKIPIF1<0,∴SKIPIF1<0,即SKIPIF1<0,由(1)可知,SKIPIF1<0平面SKIPIF1<0,所以SKIPIF1<0,∴SKIPIF1<0,∵SKIPIF1<0,∴SKIPIF1<0,∴SKIPIF1<0,即SKIPIF1<0,可知SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,由等體積:SKIPIF1<0,所以,SKIPIF1<0,則SKIPIF1<0,解得SKIPIF1<0,設(shè)直線SKIPIF1<0與平面SKIPIF1<0所成角為SKIPIF1<0,則SKIPIF1<0.【點(diǎn)睛】關(guān)鍵點(diǎn)睛:第一問(wèn)考查線線垂直的證明,解題的關(guān)鍵是利用線面垂直的性質(zhì)證明;第二問(wèn)考查線面角的求法,解題的關(guān)鍵是通過(guò)等體積法求出點(diǎn)B到平面DCE的距離,再由SKIPIF1<0求出.14.如圖,直二面角SKIPIF1<0中,四邊形SKIPIF1<0是邊長(zhǎng)為SKIPIF1<0的正方形,SKIPIF1<0,SKIPIF1<0為SKIPIF1<0上的點(diǎn),且SKIPIF1<0平面SKIPIF1<0.(1)求證:SKIPIF1<0平面SKIPIF1<0;(2)求二面角SKIPIF1<0的大??;(3)求點(diǎn)SKIPIF1<0到平面SKIPIF1<0的距離.【答案】(1)證明見(jiàn)解析;(2)SKIPIF1<0;(3)SKIPIF1<0.【分析】要證明AE⊥平面BCE,需要在平面BCE內(nèi)找兩條相交直線都垂直于AE,而易證BF⊥AE,CB⊥AE;(2)求二面角SKIPIF1<0的余弦值,需要先作角,連接BD交AC交于G,連接FG,可證得SKIPIF1<0是二面SKIPIF1<0的平面角,在SKIPIF1<0中求解即可;
(3)求點(diǎn)D到平面ACE的距離,可以轉(zhuǎn)化為求三棱錐D?ACE的高用等體積法求出即可.【詳解】證明:∵SKIPIF1<0平面SKIPIF1<0,平面SKIPIF1<0平面SKIPIF1<0,∴SKIPIF1<0,∵二面角SKIPIF1<0為直二面角,∴平面SKIPIF1<0平面SKIPIF1<0,又SKIPIF1<0,∴SKIPIF1<0平面SKIPIF1<0,∴SKIPIF1<0,又SKIPIF1<0平面SKIPIF1<0,SKIPIF1<0,∴SKIPIF1<0平面SKIPIF1<0;(2)連結(jié)SKIPIF1<0、SKIPIF1<0交于SKIPIF1<0,連結(jié)SKIPIF1<0,∵SKIPIF1<0為正方形,∴SKIPIF1<0,∵SKIPIF1<0平面SKIPIF1<0,∴SKIPIF1<0,SKIPIF1<0為二面角SKIPIF1<0的平面角,由(1)可知,SKIPIF1<0平面SKIPIF1<0,∴SKIPIF1<0,又SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,在SKIPIF1<0中,SKIPIF1<0,SKIPIF1<0,在正方形中,SKIPIF1<0,在直角三角形SKIPIF1<0中,SKIPIF1<0,∴二面角SKIPIF1<0為SKIPIF1<0;(3)由(2)可知,在正方形SKIPIF1<0中,SKIPIF1<0,SKIPIF1<0到平面SKIPIF1<0的距離等于SKIPIF1<0到平面SKIPIF1<0的距離,SKIPIF1<0平面SKIPIF1<0,線段SKIPIF1<0的長(zhǎng)度就是點(diǎn)SKIPIF1<0到平面SKIPIF1<0的距離,即為SKIPIF1<0到平面SKIPIF1<0的距離,∴SKIPIF1<0到平面SKIPIF1<0的距離為SKIPIF1<0.【點(diǎn)睛】思路點(diǎn)睛::本題考查求證線面垂直,求二面角和體積,解答本題的關(guān)鍵是作出二面角SKIPIF1<0的平面角,用定義法求二面角的步驟,一作二證三求解:作出二面角的平面角證明作出的角即為所求二面角的平面角.(2)將角歸結(jié)到三角形中,利用余弦定理求解(3)得出答案.15.如圖,四棱錐SKIPIF1<0的底面SKIPIF1<0為正方形,平面SKIPIF1<0平面SKIPIF1<0,且SKIPIF1<0,SKIPIF1<0.(1)證明:SKIPIF1<0平面SKIPIF1<0;(2)求點(diǎn)SKIPIF1<0到平面SKIPIF1<0的距離.【答案】(1)證明見(jiàn)解析;(2)SKIPIF1<0.【分析】(1)由面面垂直的性質(zhì)可得SKIPIF1<0平面SKIPIF1<0,進(jìn)而可得SKIPIF1<0,結(jié)合平面幾何的知識(shí)可得SKIPIF1<0,由線面垂直的判定即可得證;(2)取SKIPIF1<0的中點(diǎn)SKIPIF1<0,連接SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,作SKIPIF1<0于SKIPIF1<0,結(jié)合錐體的體積公式利用等體積法即可得解.【詳解】(1)證明:∵平面SKIPIF1<0平面SKIPIF1<0,平面SKIPIF1<0平面SKIPIF1<0,SKIPIF1<0,SKIPIF1<0平面SKIPIF1<0,∴SKIPIF1<0平面SKIPIF1<0,又∵SKIPIF1<0平面SKIPIF1<0,∴SKIPIF1<0,在SKIPIF1<0中,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,∴SKIPIF1<0,∵SKIPIF1<0,SKIPIF1<0,SKIPIF1<0平面SKIPIF1<0,∴SKIPIF1<0平面SKIPIF1<0;(2)設(shè)點(diǎn)SKIPIF1<0到平面SKIPIF1<0的距離為SKIPIF1<0,取SKIPIF1<0的中點(diǎn)SKIPIF1<0,連接SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,作SKIPIF1<0于SKIPIF1<0,如圖,則SKIPIF1<0.∵平面SKIPIF1<0平面SKIPIF1<0,平面SKIPIF1<0平面SKIPIF1<0,∴SKIPIF1<0平面SKIPIF1<0,∵SKIPIF1<0,SKIPIF1<0,∴在SKIPIF1<0中,SKIPIF1<0,同理,SKIPIF1<0,∴SKIPIF1<0是等腰三角形,SKIPIF1<0,由SKIPIF1<0SKIPIF1<0,∴SKIPIF1<0,即SKIPIF1<0,解得SKIPIF1<0,∴點(diǎn)SKIPIF1<0到平面SKIPIF1<0的距離為SKIPIF1<0.【點(diǎn)睛】關(guān)鍵點(diǎn)點(diǎn)睛:解決本題的關(guān)鍵是空間位置關(guān)系性質(zhì)與判定的應(yīng)用及等體積法解決點(diǎn)面距離.16.如圖,圓柱的軸截面SKIPIF1<0是正方形,點(diǎn)SKIPIF1<0是底面圓周上異于SKIPIF1<0的一點(diǎn),SKIPIF1<0,SKIPIF1<0是垂足.(1)證明:SKIPIF1<0;(2)若SKIPIF1<0,當(dāng)三棱錐SKIPIF1<0體積最大時(shí),求點(diǎn)SKIPIF1<0到平面SKIPIF1<0的距離.【答案】(1)詳見(jiàn)解析;(2)SKIPIF1<0【分析】(1)要證明線線垂直,需證明線面垂直,根據(jù)題中所給的垂直關(guān)系,證明SKIPIF1<0平面SKIPIF1<0;(2)首先確定點(diǎn)SKIPIF1<0的位置,再根據(jù)等體積轉(zhuǎn)化求點(diǎn)到平面的距離.【詳解】(1)由圓柱性質(zhì)可知,SKIPIF1<0平面SKIPIF1<0,SKIPIF1<0平面SKIPIF1<0,SKIPIF1<0,SKIPIF1<0是圓柱底面的直徑,點(diǎn)SKIPIF1<0在圓周上,SKIPIF1<0,又SKIPIF1<0,SKIPIF1<0平面SKIPIF1<0,SKIPIF1<0平面SKIPIF1<0,SKIPIF1<0,又SKIPIF1<0,且SKIPIF1<0,SKIPIF1<0平面SKIPIF1<0,SKIPIF1<0平面SKIPIF1<0,SKIPIF1<0;(2)SKIPIF1<0,SKIPIF1<0,當(dāng)SKIPIF1<0最大時(shí),即SKIPIF1<0最大,即SKIPIF1<0是等腰直角三角形時(shí),SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,并且點(diǎn)SKIPIF1<0到平面SKIPIF1<0的距離就是點(diǎn)SKIPIF1<0到直線SKIPIF1<0的距離SKIPIF1<0,設(shè)點(diǎn)SKIPIF1<0到平面SKIPIF1<0的距離為SKIPIF1<0,則SKIPIF1<0,解得:SKIPIF1<0【點(diǎn)睛】方法點(diǎn)睛:本題重點(diǎn)考查垂直關(guān)系,不管證明面面垂直還是證明線面垂直,關(guān)鍵都需轉(zhuǎn)化為證明線線垂直,一般證明線線垂直的方法包含1.矩形,直角三角形等,2.等腰三角形,底邊中線,高重合,3.菱形對(duì)角線互相垂直,4.線面垂直,線線垂直.17.如圖,在四棱錐SKIPIF1<0中,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0平面SKIPIF1<0,SKIPIF1<0為SKIPIF1<0的中點(diǎn).(Ⅰ)證明:SKIPIF1<0平面SKIPIF1<0;(Ⅱ)若SKIPIF1<0,求點(diǎn)SKIPIF1<0以平面SKIPIF1<0的距離.【答案】(Ⅰ)證明見(jiàn)解析;(Ⅱ)SKIPIF1<0.【分析】(Ⅰ)取SKIPIF1<0的中點(diǎn)SKIPIF1<0,連接SKIPIF1<0,SKIPIF1<0,根據(jù)面面平行的判定定理,先證平面SKIPIF1<0平面SKIPIF1<0,進(jìn)而可證線面平行;(Ⅱ)根據(jù)題中條件,先求出三棱錐的體積,再設(shè)點(diǎn)SKIPIF1<0到平面SKIPIF1<0的距離為SKIPIF1<0,根據(jù)體積公式,即可求出點(diǎn)到面的距離.【詳解】(Ⅰ)取SKIPIF1<0的中點(diǎn)SKIPIF1<0,連接SKIPIF1<0,SKIPIF1<0.因?yàn)镾KIPIF1<0為SKIPIF1<0的中點(diǎn),所以SKIPIF1<0,又SKIPIF1<0平面SKIPIF1<0,SKIPIF1<0平面SKIPIF1<0,所以SKIPIF1<0平面SKIPIF1<0.因?yàn)镾KIPIF1<0,所以SKIPIF1<0.又SKIPIF1<0,所以四邊形SKIPIF1<0是平行四邊形,所以SKIPIF1<0,因?yàn)镾KIPIF1<0平面SKIPIF1<0,SKIPIF1<0
溫馨提示
- 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 2025至2031年中國(guó)實(shí)罐加汁機(jī)行業(yè)投資前景及策略咨詢研究報(bào)告
- 2025至2031年中國(guó)單路直流電流隔離變送器行業(yè)投資前景及策略咨詢研究報(bào)告
- 2025至2030年中國(guó)鋁質(zhì)直角組合開(kāi)花板數(shù)據(jù)監(jiān)測(cè)研究報(bào)告
- 2025至2030年中國(guó)金華臘雞數(shù)據(jù)監(jiān)測(cè)研究報(bào)告
- 2025至2030年中國(guó)紫晶間黑瑪瑙雙股絲線串項(xiàng)鏈數(shù)據(jù)監(jiān)測(cè)研究報(bào)告
- 2025至2030年中國(guó)管樁PC拉拔模具數(shù)據(jù)監(jiān)測(cè)研究報(bào)告
- 2025至2030年中國(guó)電子節(jié)能燈專用滌綸電容器數(shù)據(jù)監(jiān)測(cè)研究報(bào)告
- 2025至2030年中國(guó)片式固定電阻數(shù)據(jù)監(jiān)測(cè)研究報(bào)告
- 2025至2030年中國(guó)有機(jī)橙數(shù)據(jù)監(jiān)測(cè)研究報(bào)告
- 2025至2030年中國(guó)日華椅數(shù)據(jù)監(jiān)測(cè)研究報(bào)告
- 財(cái)務(wù)報(bào)表涉稅分析
- 五官科眼耳鼻咽喉科醫(yī)療常用器械的認(rèn)識(shí)
- 企業(yè)清產(chǎn)核資報(bào)表
- 淺談建筑工程機(jī)電安裝施工技術(shù)運(yùn)用論文
- 農(nóng)田雜草的分類
- 婦產(chǎn)科護(hù)理學(xué)課程標(biāo)準(zhǔn)
- 《字體設(shè)計(jì)》模塊五 裝飾性變化設(shè)計(jì)技巧的訓(xùn)練
- 《摔跤吧爸爸》觀后感PPT
- meyer壓裂模擬及功能培訓(xùn)
- 中華人民共和國(guó)國(guó)歌教案【四篇】
- FRENIC 5000G11S、P11S富士變頻器操作說(shuō)明書
評(píng)論
0/150
提交評(píng)論