版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)
文檔簡介
2022-2023學(xué)年高三上數(shù)學(xué)期末模擬試卷注意事項:1.答卷前,考生務(wù)必將自己的姓名、準(zhǔn)考證號、考場號和座位號填寫在試題卷和答題卡上。用2B鉛筆將試卷類型(B)填涂在答題卡相應(yīng)位置上。將條形碼粘貼在答題卡右上角"條形碼粘貼處"。2.作答選擇題時,選出每小題答案后,用2B鉛筆把答題卡上對應(yīng)題目選項的答案信息點涂黑;如需改動,用橡皮擦干凈后,再選涂其他答案。答案不能答在試題卷上。3.非選擇題必須用黑色字跡的鋼筆或簽字筆作答,答案必須寫在答題卡各題目指定區(qū)域內(nèi)相應(yīng)位置上;如需改動,先劃掉原來的答案,然后再寫上新答案;不準(zhǔn)使用鉛筆和涂改液。不按以上要求作答無效。4.考生必須保證答題卡的整潔??荚嚱Y(jié)束后,請將本試卷和答題卡一并交回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.函數(shù)的部分圖象如圖所示,則的單調(diào)遞增區(qū)間為()A. B.C. D.2.已知,,,,則()A. B. C. D.3.函數(shù)的圖象大致是()A. B.C. D.4.以下四個命題:①兩個隨機變量的線性相關(guān)性越強,相關(guān)系數(shù)的絕對值越接近1;②在回歸分析中,可用相關(guān)指數(shù)的值判斷擬合效果,越小,模型的擬合效果越好;③若數(shù)據(jù)的方差為1,則的方差為4;④已知一組具有線性相關(guān)關(guān)系的數(shù)據(jù),其線性回歸方程,則“滿足線性回歸方程”是“,”的充要條件;其中真命題的個數(shù)為()A.4 B.3 C.2 D.15.已知點在雙曲線上,則該雙曲線的離心率為()A. B. C. D.6.已知函數(shù)為奇函數(shù),且,則()A.2 B.5 C.1 D.37.如圖,平面四邊形中,,,,為等邊三角形,現(xiàn)將沿翻折,使點移動至點,且,則三棱錐的外接球的表面積為()A. B. C. D.8.已知偶函數(shù)在區(qū)間內(nèi)單調(diào)遞減,,,,則,,滿足()A. B. C. D.9.已知數(shù)列為等差數(shù)列,為其前項和,,則()A.7 B.14 C.28 D.8410.已知三點A(1,0),B(0,),C(2,),則△ABC外接圓的圓心到原點的距離為()A. B.C. D.11.關(guān)于圓周率π,數(shù)學(xué)發(fā)展史上出現(xiàn)過許多很有創(chuàng)意的求法,如著名的浦豐實驗和查理斯實驗.受其啟發(fā),我們也可以通過設(shè)計下面的實驗來估計的值:先請全校名同學(xué)每人隨機寫下一個都小于的正實數(shù)對;再統(tǒng)計兩數(shù)能與構(gòu)成鈍角三角形三邊的數(shù)對的個數(shù);最后再根據(jù)統(tǒng)計數(shù)估計的值,那么可以估計的值約為()A. B. C. D.12.已知函數(shù)且的圖象恒過定點,則函數(shù)圖象以點為對稱中心的充要條件是()A. B.C. D.二、填空題:本題共4小題,每小題5分,共20分。13.某校名學(xué)生參加軍事冬令營活動,活動期間各自扮演一名角色進行分組游戲,角色按級別從小到大共種,分別為士兵、排長、連長、營長、團長、旅長、師長、軍長和司令.游戲分組有兩種方式,可以人一組或者人一組.如果人一組,則必須角色相同;如果人一組,則人角色相同或者人為級別連續(xù)的個不同角色.已知這名學(xué)生扮演的角色有名士兵和名司令,其余角色各人,現(xiàn)在新加入名學(xué)生,將這名學(xué)生分成組進行游戲,則新加入的學(xué)生可以扮演的角色的種數(shù)為________.14.四面體中,底面,,,則四面體的外接球的表面積為______15.根據(jù)如圖所示的偽代碼,若輸出的的值為,則輸入的的值為_______.16.已知二項式ax-1x6的展開式中的常數(shù)項為-160三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(12分)在中,角的對邊分別為,若.(1)求角的大??;(2)若,為外一點,,求四邊形面積的最大值.18.(12分)已知函數(shù),的最大值為.求實數(shù)b的值;當(dāng)時,討論函數(shù)的單調(diào)性;當(dāng)時,令,是否存在區(qū)間,,使得函數(shù)在區(qū)間上的值域為?若存在,求實數(shù)k的取值范圍;若不存在,請說明理由.19.(12分)已知,.(1)解不等式;(2)若方程有三個解,求實數(shù)的取值范圍.20.(12分)已知拋物線的準(zhǔn)線過橢圓C:(a>b>0)的左焦點F,且點F到直線l:(c為橢圓焦距的一半)的距離為4.(1)求橢圓C的標(biāo)準(zhǔn)方程;(2)過點F做直線與橢圓C交于A,B兩點,P是AB的中點,線段AB的中垂線交直線l于點Q.若,求直線AB的方程.21.(12分)設(shè)函數(shù)f(x)=sin(2x-π(I)求f(x)的最小正周期;(II)若α∈(π6,π)且f(22.(10分)橢圓的右焦點,過點且與軸垂直的直線被橢圓截得的弦長為.(1)求橢圓的方程;(2)過點且斜率不為0的直線與橢圓交于,兩點.為坐標(biāo)原點,為橢圓的右頂點,求四邊形面積的最大值.
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、D【解析】
由圖象可以求出周期,得到,根據(jù)圖象過點可求,根據(jù)正弦型函數(shù)的性質(zhì)求出單調(diào)增區(qū)間即可.【詳解】由圖象知,所以,,又圖象過點,所以,故可取,所以令,解得所以函數(shù)的單調(diào)遞增區(qū)間為故選:.【點睛】本題主要考查了三角函數(shù)的圖象與性質(zhì),利用“五點法”求函數(shù)解析式,屬于中檔題.2、D【解析】
令,求,利用導(dǎo)數(shù)判斷函數(shù)為單調(diào)遞增,從而可得,設(shè),利用導(dǎo)數(shù)證出為單調(diào)遞減函數(shù),從而證出,即可得到答案.【詳解】時,令,求導(dǎo),,故單調(diào)遞增:∴,當(dāng),設(shè),,又,,即,故.故選:D【點睛】本題考查了作差法比較大小,考查了構(gòu)造函數(shù)法,利用導(dǎo)數(shù)判斷式子的大小,屬于中檔題.3、B【解析】
根據(jù)函數(shù)表達式,把分母設(shè)為新函數(shù),首先計算函數(shù)定義域,然后求導(dǎo),根據(jù)導(dǎo)函數(shù)的正負判斷函數(shù)單調(diào)性,對應(yīng)函數(shù)圖像得到答案.【詳解】設(shè),,則的定義域為.,當(dāng),,單增,當(dāng),,單減,則.則在上單增,上單減,.選B.【點睛】本題考查了函數(shù)圖像的判斷,用到了換元的思想,簡化了運算,同學(xué)們還可以用特殊值法等方法進行判斷.4、C【解析】
①根據(jù)線性相關(guān)性與r的關(guān)系進行判斷,
②根據(jù)相關(guān)指數(shù)的值的性質(zhì)進行判斷,
③根據(jù)方差關(guān)系進行判斷,
④根據(jù)點滿足回歸直線方程,但點不一定就是這一組數(shù)據(jù)的中心點,而回歸直線必過樣本中心點,可進行判斷.【詳解】①若兩個隨機變量的線性相關(guān)性越強,則相關(guān)系數(shù)r的絕對值越接近于1,故①正確;
②用相關(guān)指數(shù)的值判斷模型的擬合效果,越大,模型的擬合效果越好,故②錯誤;
③若統(tǒng)計數(shù)據(jù)的方差為1,則的方差為,故③正確;
④因為點滿足回歸直線方程,但點不一定就是這一組數(shù)據(jù)的中心點,即,不一定成立,而回歸直線必過樣本中心點,所以當(dāng),時,點必滿足線性回歸方程;因此“滿足線性回歸方程”是“,”必要不充分條件.故④錯誤;
所以正確的命題有①③.
故選:C.【點睛】本題考查兩個隨機變量的相關(guān)性,擬合性檢驗,兩個線性相關(guān)的變量間的方差的關(guān)系,以及兩個變量的線性回歸方程,注意理解每一個量的定義,屬于基礎(chǔ)題.5、C【解析】
將點A坐標(biāo)代入雙曲線方程即可求出雙曲線的實軸長和虛軸長,進而求得離心率.【詳解】將,代入方程得,而雙曲線的半實軸,所以,得離心率,故選C.【點睛】此題考查雙曲線的標(biāo)準(zhǔn)方程和離心率的概念,屬于基礎(chǔ)題.6、B【解析】
由函數(shù)為奇函數(shù),則有,代入已知即可求得.【詳解】.故選:.【點睛】本題考查奇偶性在抽象函數(shù)中的應(yīng)用,考查學(xué)生分析問題的能力,難度較易.7、A【解析】
將三棱錐補形為如圖所示的三棱柱,則它們的外接球相同,由此易知外接球球心應(yīng)在棱柱上下底面三角形的外心連線上,在中,計算半徑即可.【詳解】由,,可知平面.將三棱錐補形為如圖所示的三棱柱,則它們的外接球相同.由此易知外接球球心應(yīng)在棱柱上下底面三角形的外心連線上,記的外心為,由為等邊三角形,可得.又,故在中,,此即為外接球半徑,從而外接球表面積為.故選:A【點睛】本題考查了三棱錐外接球的表面積,考查了學(xué)生空間想象,邏輯推理,綜合分析,數(shù)學(xué)運算的能力,屬于較難題.8、D【解析】
首先由函數(shù)為偶函數(shù),可得函數(shù)在內(nèi)單調(diào)遞增,再由,即可判定大小【詳解】因為偶函數(shù)在減,所以在上增,,,,∴.故選:D【點睛】本題考查函數(shù)的奇偶性和單調(diào)性,不同類型的數(shù)比較大小,應(yīng)找一個中間數(shù),通過它實現(xiàn)大小關(guān)系的傳遞,屬于中檔題.9、D【解析】
利用等差數(shù)列的通項公式,可求解得到,利用求和公式和等差中項的性質(zhì),即得解【詳解】,解得..故選:D【點睛】本題考查了等差數(shù)列的通項公式、求和公式和等差中項,考查了學(xué)生綜合分析,轉(zhuǎn)化劃歸,數(shù)學(xué)運算的能力,屬于中檔題.10、B【解析】
選B.考點:圓心坐標(biāo)11、D【解析】
由試驗結(jié)果知對0~1之間的均勻隨機數(shù),滿足,面積為1,再計算構(gòu)成鈍角三角形三邊的數(shù)對,滿足條件的面積,由幾何概型概率計算公式,得出所取的點在圓內(nèi)的概率是圓的面積比正方形的面積,即可估計的值.【詳解】解:根據(jù)題意知,名同學(xué)取對都小于的正實數(shù)對,即,對應(yīng)區(qū)域為邊長為的正方形,其面積為,若兩個正實數(shù)能與構(gòu)成鈍角三角形三邊,則有,其面積;則有,解得故選:.【點睛】本題考查線性規(guī)劃可行域問題及隨機模擬法求圓周率的幾何概型應(yīng)用問題.線性規(guī)劃可行域是一個封閉的圖形,可以直接解出可行域的面積;求解與面積有關(guān)的幾何概型時,關(guān)鍵是弄清某事件對應(yīng)的面積,必要時可根據(jù)題意構(gòu)造兩個變量,把變量看成點的坐標(biāo),找到試驗全部結(jié)果構(gòu)成的平面圖形,以便求解.12、A【解析】
由題可得出的坐標(biāo)為,再利用點對稱的性質(zhì),即可求出和.【詳解】根據(jù)題意,,所以點的坐標(biāo)為,又,所以.故選:A.【點睛】本題考查指數(shù)函數(shù)過定點問題和函數(shù)對稱性的應(yīng)用,屬于基礎(chǔ)題.二、填空題:本題共4小題,每小題5分,共20分。13、【解析】
對新加入的學(xué)生所扮演的角色進行分類討論,分析各種情況下個學(xué)生所扮演的角色的分組,綜合可得出結(jié)論.【詳解】依題意,名學(xué)生分成組,則一定是個人組和個人組.①若新加入的學(xué)生是士兵,則可以將這個人分組如下;名士兵;士兵、排長、連長各名;營長、團長、旅長各名;師長、軍長、司令各名;名司令.所以新加入的學(xué)生可以是士兵,由對稱性可知也可以是司令;②若新加入的學(xué)生是排長,則可以將這個人分組如下:名士兵;連長、營長、團長各名;旅長、師長、軍長各名;名司令;名排長.所以新加入的學(xué)生可以是排長,由對稱性可知也可以是軍長;③若新加入的學(xué)生是連長,則可以將這個人分組如下:名士兵;士兵、排長、連長各名;連長、營長、團長各名;旅長、師長、軍長各名;名司令.所以新加入的學(xué)生可以是連長,由對稱性可知也可以是師長;④若新加入的學(xué)生是營長,則可以將這個人分組如下:名士兵;排長、連長、營長各名;營長、團長、旅長各名;師長、軍長、司令各名;名司令.所以新加入的學(xué)生可以是營長,由對稱性可知也可以是旅長;⑤若新加入的學(xué)生是團長,則可以將這個人分組如下:名士兵;排長、連長、營長各名;旅長、師長、軍長各名;名司令;名團長.所以新加入的學(xué)生可以是團長.綜上所述,新加入學(xué)生可以扮演種角色.故答案為:.【點睛】本題考查分類計數(shù)原理的應(yīng)用,解答的關(guān)鍵就是對新加入的學(xué)生所扮演的角色進行分類討論,屬于中等題.14、【解析】
由題意畫出圖形,補形為長方體,求其對角線長,可得四面體外接球的半徑,則表面積可求.【詳解】解:如圖,在四面體中,底面,,,可得,補形為長方體,則過一個頂點的三條棱長分別為1,1,,則長方體的對角線長為,則三棱錐的外接球的半徑為1.其表面積為.故答案為:.【點睛】本題考查多面體外接球表面積的求法,補形是關(guān)鍵,屬于中檔題.15、【解析】
算法的功能是求的值,根據(jù)輸出的值,分別求出當(dāng)時和當(dāng)時的值即可得解.【詳解】解:由程序語句知:算法的功能是求的值,當(dāng)時,,可得:,或(舍去);當(dāng)時,,可得:(舍去).綜上的值為:.故答案為:.【點睛】本題考查了選擇結(jié)構(gòu)的程序語句,根據(jù)語句判斷算法的功能是解題的關(guān)鍵,屬于基礎(chǔ)題.16、2【解析】
在二項展開式的通項公式中,令x的冪指數(shù)等于0,求出r的值,即可求得常數(shù)項,再根據(jù)常數(shù)項等于-160求得實數(shù)a的值.【詳解】∵二項式(ax-1x)令6-2r=0,求得r=3,可得常數(shù)項為-C63故答案為:2.【點睛】本題主要考查二項式定理的應(yīng)用,二項展開式的通項公式,二項式系數(shù)的性質(zhì),屬于基礎(chǔ)題.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17、(1)(2)【解析】
(1)根據(jù)正弦定理化簡等式可得,即;(2)根據(jù)題意,利用余弦定理可得,再表示出,表示出四邊形,進而可得最值.【詳解】(1),由正弦定理得:在中,,則,即,,即.(2)在中,又,則為等邊三角形,又,-當(dāng)時,四邊形的面積取最大值,最大值為.【點睛】本題主要考查了正弦定理,余弦定理,三角形面積公式的應(yīng)用,屬于基礎(chǔ)題.18、(1);(2)時,在單調(diào)增;時,在單調(diào)遞減,在單調(diào)遞增;時,同理在單調(diào)遞減,在單調(diào)遞增;(3)不存在.【解析】分析:(1)利用導(dǎo)數(shù)研究函數(shù)的單調(diào)性,可得當(dāng)時,取得極大值,也是最大值,由,可得結(jié)果;(2)求出,分三種情況討論的范圍,在定義域內(nèi),分別令求得的范圍,可得函數(shù)增區(qū)間,求得的范圍,可得函數(shù)的減區(qū)間;(3)假設(shè)存在區(qū)間,使得函數(shù)在區(qū)間上的值域是,則,問題轉(zhuǎn)化為關(guān)于的方程在區(qū)間內(nèi)是否存在兩個不相等的實根,進而可得結(jié)果.詳解:(1)由題意得,令,解得,當(dāng)時,,函數(shù)單調(diào)遞增;當(dāng)時,,函數(shù)單調(diào)遞減.所以當(dāng)時,取得極大值,也是最大值,所以,解得.(2)的定義域為.①即,則,故在單調(diào)增②若,而,故,則當(dāng)時,;當(dāng)及時,故在單調(diào)遞減,在單調(diào)遞增.③若,即,同理在單調(diào)遞減,在單調(diào)遞增(3)由(1)知,所以,令,則對恒成立,所以在區(qū)間內(nèi)單調(diào)遞增,所以恒成立,所以函數(shù)在區(qū)間內(nèi)單調(diào)遞增.假設(shè)存在區(qū)間,使得函數(shù)在區(qū)間上的值域是,則,問題轉(zhuǎn)化為關(guān)于的方程在區(qū)間內(nèi)是否存在兩個不相等的實根,即方程在區(qū)間內(nèi)是否存在兩個不相等的實根,令,,則,設(shè),,則對恒成立,所以函數(shù)在區(qū)間內(nèi)單調(diào)遞增,故恒成立,所以,所以函數(shù)在區(qū)間內(nèi)單調(diào)遞增,所以方程在區(qū)間內(nèi)不存在兩個不相等的實根.綜上所述,不存在區(qū)間,使得函數(shù)在區(qū)間上的值域是.點睛:本題主要考查利用導(dǎo)數(shù)判斷函數(shù)的單調(diào)性以及函數(shù)的最值值,屬于難題.求函數(shù)極值、最值的步驟:(1)確定函數(shù)的定義域;(2)求導(dǎo)數(shù);(3)解方程求出函數(shù)定義域內(nèi)的所有根;(4)列表檢查在的根左右兩側(cè)值的符號,如果左正右負(左增右減),那么在處取極大值,如果左負右正(左減右增),那么在處取極小值.(5)如果只有一個極值點,則在該處即是極值也是最值;(6)如果求閉區(qū)間上的最值還需要比較端點值的函數(shù)值與極值的大小.19、(1);(2).【解析】
(1)對分三種情況討論,分別去掉絕對值符號,然后求解不等式組,再求并集即可得結(jié)果;(2).作出函數(shù)的圖象,當(dāng)直線與函數(shù)的圖象有三個公共點時,方程有三個解,由圖可得結(jié)果.【詳解】(1)不等式,即為.當(dāng)時,即化為,得,此時不等式的解集為,當(dāng)時,即化為,解得,此時不等式的解集為.綜上,不等式的解集為.(2)即.作出函數(shù)的圖象如圖所示,當(dāng)直線與函數(shù)的圖象有三個公共點時,方程有三個解,所以.所以實數(shù)的取值范圍是.【點睛】絕對值不等式的解法:法一:利用絕對值不等式的幾何意義求解,體現(xiàn)了數(shù)形結(jié)合的思想;法二:利用“零點分段法”求解,體現(xiàn)了
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 2024年03月工銀安盛人壽保險有限公司(中國工商銀行)2024年度春季校園招考80名工作人員筆試歷年參考題庫附帶答案詳解
- 2025年度城市綜合體物業(yè)綜合服務(wù)合同示范3篇
- 2024年離婚最快途徑:了解訴訟離婚與協(xié)議離婚3篇
- 寧波浙江寧波市智慧城市規(guī)劃標(biāo)準(zhǔn)發(fā)展研究院招聘聘用制研究人員筆試歷年典型考點(頻考版試卷)附帶答案詳解
- 2025年度會展租賃服務(wù)與廣告投放合同3篇
- 2024年進出口交易委托代理協(xié)議要覽
- 2024年中國琥珀消食顆粒市場調(diào)查研究報告
- 2025年度綠色環(huán)保型SPF豬飼養(yǎng)費項目合作協(xié)議
- 呼倫貝爾2024年內(nèi)蒙古根河市事業(yè)單位藝術(shù)專業(yè)技術(shù)崗位招聘4人筆試歷年典型考點(頻考版試卷)附帶答案詳解
- 2025版新材料研發(fā)中心項目可研報告編制合同3篇
- 2025蛇年學(xué)校元旦聯(lián)歡晚會模板
- WPS Office辦公軟件應(yīng)用教學(xué)教案
- 2024年度租賃期滿退房檢查清單:租戶與房東的交接確認單
- 第八版糖尿病
- 幼兒園后勤主任年終總結(jié)
- 機器人設(shè)備巡檢管理制度
- 帶式運輸機傳動裝置的設(shè)計
- DB50T 1689-2024 綠茶型老鷹茶加工技術(shù)規(guī)范
- 初級消防設(shè)施操作員實操題庫 (一)
- 國家職業(yè)技術(shù)技能標(biāo)準(zhǔn) 4-02-01-01 軌道列車司機(動車組司機)人社廳發(fā)2019121號
- CURTIS1232-1234-1236-SE-SERIES交流控制器手冊
評論
0/150
提交評論