




版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)
文檔簡介
2022-2023學(xué)年九上數(shù)學(xué)期末模擬試卷注意事項1.考試結(jié)束后,請將本試卷和答題卡一并交回.2.答題前,請務(wù)必將自己的姓名、準(zhǔn)考證號用0.5毫米黑色墨水的簽字筆填寫在試卷及答題卡的規(guī)定位置.3.請認真核對監(jiān)考員在答題卡上所粘貼的條形碼上的姓名、準(zhǔn)考證號與本人是否相符.4.作答選擇題,必須用2B鉛筆將答題卡上對應(yīng)選項的方框涂滿、涂黑;如需改動,請用橡皮擦干凈后,再選涂其他答案.作答非選擇題,必須用05毫米黑色墨水的簽字筆在答題卡上的指定位置作答,在其他位置作答一律無效.5.如需作圖,須用2B鉛筆繪、寫清楚,線條、符號等須加黑、加粗.一、選擇題(每題4分,共48分)1.如圖,比例規(guī)是一種畫圖工具,它由長度相等的兩腳AC和BD交叉構(gòu)成,利用它可以把線段按一定的比例伸長或縮短.如果把比例規(guī)的兩腳合上,使螺絲釘固定在刻度3的地方(即同時使OA=3OC,OB=3OD),然后張開兩腳,使A,B兩個尖端分別在線段a的兩個端點上,當(dāng)CD=1.8cm時,則AB的長為()A.7.2cm B.5.4cm C.3.6cm D.0.6cm2.如圖所示,∠APB=30°,O為PA上一點,且PO=6,以點O為圓心,半徑為3的圓與PB的位置關(guān)系是()A.相離 B.相切C.相交 D.相切、相離或相交3.如圖,在Rt△ABC中,CE是斜邊AB上的中線,CD⊥AB,若CD=5,CE=6,則△ABC的面積是()A.24 B.25 C.30 D.364.若關(guān)于x的一元二次方程x2+2x﹣m=0的一個根是x=1,則m的值是()A.1 B.2 C.3 D.45.計算的結(jié)果是()A. B. C. D.96.二次函數(shù)y=﹣x2+2x﹣4,當(dāng)﹣1<x<2時,y的取值范圍是()A.﹣7<y<﹣4 B.﹣7<y≤﹣3 C.﹣7≤y<﹣3 D.﹣4<y≤﹣37.如圖,矩形草坪ABCD中,AD=10m,AB=m.現(xiàn)需要修一條由兩個扇環(huán)構(gòu)成的便道HEFG,扇環(huán)的圓心分別是B,D.若便道的寬為1m,則這條便道的面積大約是()(精確到0.1m2)A.9.5m2 B.10.0m2 C.10.5m2 D.11.0m28.給出下列函數(shù),其中y隨x的增大而減小的函數(shù)是()①y=2x;②y=﹣2x+1;③y=(x<0);④y=x2(x<1).A.①③④ B.②③④ C.②④ D.②③9.如圖,在Rt△ABC中,∠C=90°,AC=2,BC=3,則tanA=()A. B. C. D.10.如圖,內(nèi)接于⊙,,,則⊙半徑為()A.4 B.6 C.8 D.1211.一元二次方程配方為()A. B. C. D.12.將二次函數(shù)y=ax2的圖象先向下平移2個單位,再向右平移3個單位,截x軸所得的線段長為4,則a=()A.1 B. C. D.二、填空題(每題4分,共24分)13.已知關(guān)于x的一元二次方程有兩個實數(shù)根,,若,滿足,則m的值為_____________14.如圖,在平面直角坐標(biāo)系中,函數(shù)和的圖象分別為直線,,過點(1,0)作軸的垂線交于點,過點作軸的垂線交于點,過點作軸的垂線交于點,過點作軸的垂線交于點,…依次進行下去,則點的坐標(biāo)為_________.15.如圖,△ABC中,D為BC上一點,∠BAD=∠C,AB=6,BD=4,則CD的長為____.16.如圖,拋物線(是常數(shù),),與軸交于兩點,頂點的坐標(biāo)是,給出下列四個結(jié)論:①;②若,,在拋物線上,則;③若關(guān)于的方程有實數(shù)根,則;④,其中正確的結(jié)論是__________.(填序號)17.如圖,在菱形中,,,點,,分別為線段,,上的任意一點,則的最小值為__________.18.若關(guān)于x的一元二次方程有實數(shù)根,則m的取值范圍是___________.三、解答題(共78分)19.(8分)已知拋物線,求證:無論為何值,拋物線與軸總有兩個交點.20.(8分)如圖甲,在△ABC中,∠ACB=90°,AC=4cm,BC=3cm.如果點P由點B出發(fā)沿BA方向向點A勻速運動,同時點Q由點A出發(fā)沿AC方向向點C勻速運動,它們的速度均為1cm/s.連接PQ,設(shè)運動時間為t(s)(0<t<4),解答下列問題:(1)設(shè)△APQ的面積為S,當(dāng)t為何值時,S取得最大值,S的最大值是多少;(2)如圖乙,連接PC,將△PQC沿QC翻折,得到四邊形PQP′C,當(dāng)四邊形PQP′C為菱形時,求t的值;(3)當(dāng)t為何值時,△APQ是等腰三角形.21.(8分)如圖,△ABC中,AB=AC=2,∠BAC=120°,D為BC邊上的點,將DA繞D點逆時針旋轉(zhuǎn)120°得到DE.(1)如圖1,若AD=DC,則BE的長為,BE2+CD2與AD2的數(shù)量關(guān)系為;(2)如圖2,點D為BC邊山任意一點,線段BE、CD、AD是否依然滿足(1)中的關(guān)系,試證明;(3)M為線段BC上的點,BM=1,經(jīng)過B、E、D三點的圓最小時,記D點為D1,當(dāng)D點從D1處運動到M處時,E點經(jīng)過的路徑長為.22.(10分)(1)用配方法解方程:;(2)用公式法解方程:.23.(10分)直線y=kx+b與反比例函數(shù)(x>0)的圖象分別交于點A(m,4)和點B(8,n),與坐標(biāo)軸分別交于點C和點D.(1)求直線AB的解析式;(2)觀察圖象,當(dāng)x>0時,直接寫出的解集;(3)若點P是x軸上一動點,當(dāng)△COD與△ADP相似時,求點P的坐標(biāo).24.(10分)解方程:(1)x2﹣4x﹣1=0;(2)5x(x﹣1)=x﹣1.25.(12分)定義:如圖1,點P為∠AOB平分線上一點,∠MPN的兩邊分別與射線OA,OB交于M,N兩點,若∠MPN繞點P旋轉(zhuǎn)時始終滿足OM?ON=OP2,則稱∠MPN是∠AOB的“相關(guān)角”.(1)如圖1,已知∠AOB=60°,點P為∠AOB平分線上一點,∠MPN的兩邊分別與射線OA,OB交于M,N兩點,且∠MPN=150°.求證:∠MPN是∠AOB的“相關(guān)角”;(2)如圖2,已知∠AOB=α(0°α90°),OP=3,若∠MPN是∠AOB的“相關(guān)角”,連結(jié)MN,用含α的式子分別表示∠MPN的度數(shù)和△MON的面積;(3)如圖3,C是函數(shù)(x0)圖象上的一個動點,過點C的直線CD分別交x軸和y軸于點A,B兩點,且滿足BC=3CA,∠AOB的“相關(guān)角”為∠APB,請直接寫出OP的長及相應(yīng)點P的坐標(biāo).26.已知,直線與拋物線相交于、兩點,且的坐標(biāo)是(1)求,的值;(2)拋物線的表達式及其對稱軸和頂點坐標(biāo).
參考答案一、選擇題(每題4分,共48分)1、B【解析】由已知可證△ABO∽CDO,故,即.【詳解】由已知可得,△ABO∽CDO,所以,,所以,,所以,AB=5.4故選B【點睛】本題考核知識點:相似三角形.解題關(guān)鍵點:熟記相似三角形的判定和性質(zhì).2、C【分析】過O作OC⊥PB于C,根據(jù)直角三角形的性質(zhì)得到OC=3,根據(jù)直線與圓的位置關(guān)系即可得到結(jié)論.【詳解】解:過O作OC⊥PB于C,∵∠APB=30°,OP=6,∴OC=OP=3<3,∴半徑為3的圓與PB的位置關(guān)系是相交,故選:C.【點睛】本題考查直線與圓的位置關(guān)系,掌握含30°角的直角三角形的性質(zhì)是本題的解題關(guān)鍵.3、C【分析】根據(jù)題意及直角三角形斜邊上的中線等于斜邊的一半可得:AB=2CE=12再根據(jù)三角形面積公式,即△ABC面積=AB×CD=30.故選C.【詳解】解:∵CE是斜邊AB上的中線,∴AB=2CE=2×6=12,∴S△ABC=×CD×AB=×5×12=30,故選:C.【點睛】本題的考點是直角三角形斜邊上的中線性質(zhì)及三角形面積公式.方法是根據(jù)題意求出三角形面積公式中的底,再根據(jù)面積公式即可得出答案.4、C【分析】根據(jù)一元二次方程的解的定義,把x=1代入方程得1+2﹣m=0,然后解關(guān)于m的一次方程即可.【詳解】解:把x=1代入x2+2x﹣m=0得1+2﹣m=0,解得m=1.故選:C.【點睛】本題考查一元二次的代入求參數(shù),關(guān)鍵在于掌握基本運算方法.5、D【分析】根據(jù)負整數(shù)指數(shù)冪的計算方法:,為正整數(shù)),求出的結(jié)果是多少即可.【詳解】解:,計算的結(jié)果是1.故選:D.【點睛】此題主要考查了負整數(shù)指數(shù)冪:,為正整數(shù)),要熟練掌握,解答此題的關(guān)鍵是要明確:(1)計算負整數(shù)指數(shù)冪時,一定要根據(jù)負整數(shù)指數(shù)冪的意義計算;(2)當(dāng)?shù)讛?shù)是分?jǐn)?shù)時,只要把分子、分母顛倒,負指數(shù)就可變?yōu)檎笖?shù).6、B【分析】先求出二次函數(shù)的對稱軸,再根據(jù)二次函數(shù)的增減性求出最小值和最大值即可.【詳解】解:∵y=﹣x2+2x﹣4,=﹣(x2﹣2x+4)=﹣(x﹣1)2﹣1,∴二次函數(shù)的對稱軸為直線x=1,∴﹣1<x<2時,x=1取得最大值為﹣1,x=﹣1時取得最小值為﹣(﹣1)2+2×(﹣1)﹣4=﹣7,∴y的取值范圍是﹣7<y≤﹣1.故選:B.【點睛】本題考查了二次函數(shù)與不等式,主要利用了二次函數(shù)的增減性和對稱性,確定出對稱軸從而判斷出取得最大值和最小值的情況是解題的關(guān)鍵.7、C【分析】由四邊形ABCD為矩形得到△ADB為直角三角形,又由AD=10,AB=10,由此利用勾股定理求出BD=20,又由cos∠ADB=,得到∠ADB=60°,又矩形對角線互相平分且相等,便道的寬為1m,所以每個扇環(huán)都是圓心角為30°且外環(huán)半徑為10.1,內(nèi)環(huán)半徑為9.1.這樣可以求出每個扇環(huán)的面積.【詳解】∵四邊形ABCD為矩形,∴△ADB為直角三角形,又∵AD=10,AB=,∴BD=,又∵cos∠ADB=,∴∠ADB=60°.又矩形對角線互相平分且相等,便道的寬為1m,所以每個扇環(huán)都是圓心角為30°,且外環(huán)半徑為10.1,內(nèi)環(huán)半徑為9.1.∴每個扇環(huán)的面積為.∴當(dāng)π取3.14時整條便道面積為×2=10.4666≈10.1m2.便道面積約為10.1m2.故選:C.【點睛】此題考查內(nèi)容比較多,有勾股定理、三角函數(shù)、扇形面積,做題的關(guān)鍵是把實際問題轉(zhuǎn)化為數(shù)學(xué)問題.8、D【解析】分別根據(jù)一次函數(shù)、二次函數(shù)及反比例函數(shù)的增減性進行解答即可【詳解】解:①∵y=2x中k=2>0,∴y隨x的增大而增大,故本小題錯誤;
②∵y=-2x+1中k=-2<0,∴y隨x的增大而減小,故本小題正確;
③∵y=(x<0)中k=2>0,∴x<0時,y隨x的增大而減小,故本小題正確;
④∵y=x2(x<1)中x<1,∴當(dāng)0<x<1時,y隨x的增大而增大,故本小題錯誤.
故選D.【點睛】本題考查的是反比例函數(shù)的性質(zhì),熟知一次函數(shù)、二次函數(shù)及反比例函數(shù)的增減性是解答此題的關(guān)鍵.9、B【分析】根據(jù)正切的定義計算,得到答案.【詳解】在Rt△ABC中,∠C=90°,,故選:B.【點睛】本題考查正切的計算,熟知直角三角形中正切的表示是解題的關(guān)鍵.10、C【分析】連接OB,OC,根據(jù)圓周角定理求出∠BOC的度數(shù),再由OB=OC判斷出△OBC是等邊三角形,由此可得出結(jié)論.【詳解】解:連接OB,OC,∵∠BAC=30°,∴∠BOC=60°.∵OB=OC,BC=1,∴△OBC是等邊三角形,∴OB=BC=1.故選:C.【點睛】本題考查的是圓周角定理以及等邊三角形的判定和性質(zhì),根據(jù)題意作出輔助線,構(gòu)造出等邊三角形是解答此題的關(guān)鍵.11、A【分析】方程移項變形后,利用完全平方公式化簡得到結(jié)果,即可做出判斷.【詳解】解:x2-6x-4=0,
x2-6x=4,
x2-6x+32=4+32,
(x-3)2=13,
故選:A.【點睛】此題考查了解一元二次方程-配方法.配方法的一般步驟:(1)把常數(shù)項移到等號的右邊;
(2)把二次項的系數(shù)化為1;(3)等式兩邊同時加上一次項系數(shù)一半的平方.選擇用配方法解一元二次方程時,最好使方程的二次項的系數(shù)為1,一次項的系數(shù)是2的倍數(shù).12、D【分析】根據(jù)題意可以寫出平移后的函數(shù)解析式,然后根據(jù)截x軸所得的線段長為4,可以求得a的值,本題得以解決.【詳解】解:二次函數(shù)y=ax2的圖象先向下平移2個單位,再向右平移3個單位之后的函數(shù)解析式為y=a(x﹣3)2﹣2,當(dāng)y=0時,ax2﹣6ax+9a﹣2=0,設(shè)方程ax2﹣6ax+9a﹣2=0的兩個根為x1,x2,則x1+x2=6,x1x2=,∵平移后的函數(shù)截x軸所得的線段長為4,∴|x1﹣x2|=4,∴(x1﹣x2)2=16,∴(x1+x2)2﹣4x1x2=16,∴36﹣4×=16,解得,a=,故選:D.【點睛】本題考查解二次函數(shù)綜合題,解題關(guān)鍵是根據(jù)題意可以寫出平移后的函數(shù)解析式.二、填空題(每題4分,共24分)13、4【解析】由韋達定理得出x1+x2=6,x1·x2=m+4,將已知式子3x1=|x2|+2去絕對值,對x2進行分類討論,列方程組求出x1、x2的值,即可求出m的值.【詳解】由韋達定理可得x1+x2=6,x1·x2=m+4,①當(dāng)x2≥0時,3x1=x2+2,,解得,∴m=4;②當(dāng)x2<0時,3x1=2﹣x2,,解得,不合題意,舍去.∴m=4.故答案為4.【點睛】本題主要考查一元二次方程根與系數(shù)的關(guān)系,其中對x2分類討論去絕對值是解題的關(guān)鍵.14、【解析】根據(jù)一次函數(shù)圖象上點的坐標(biāo)特征可得出點A1、A2、A3、A4、A5、A6、A7、A8等的坐標(biāo),根據(jù)坐標(biāo)的變化找出變化規(guī)律“A4n+1(22n,22n+1),A4n+2(-22n+1,22n+1),A4n+3(-22n+1,-22n+2),A4n+4(22n+2,-22n+2)(n為自然數(shù))”,依此規(guī)律結(jié)合2019=504×4+3即可找出點A2019的坐標(biāo).【詳解】解:當(dāng)x=1時,y=2,
∴點A1的坐標(biāo)為(1,2);
當(dāng)y=-x=2時,x=-2,
∴點A2的坐標(biāo)為(-2,2);
同理可得:A3(-2,-4),A4(4,-4),A5(4,8),A6(-8,8),A7(-8,-16),A8(16,-16),A9(16,32),…,
∴A4n+1(22n,22n+1),A4n+2(-22n+1,22n+1),
A4n+3(-22n+1,-22n+2),A4n+4(22n+2,-22n+2)(n為自然數(shù)).
∵2019=504×4+3,
∴點A2019的坐標(biāo)為(-2504×2+1,-2504×2+2),即(-21009,-21010).
故答案為(-21009,-21010).【點睛】本題考查一次函數(shù)圖象上點的坐標(biāo)特征、正比例函數(shù)的圖象以及規(guī)律型中點的坐標(biāo),根據(jù)坐標(biāo)的變化找出變化規(guī)律“A4n+1(22n,22n+1),A4n+2(-22n+1,22n+1),A4n+3(-22n+1,-22n+2),A4n+4(22n+2,-22n+2)(n為自然數(shù))”是解題的關(guān)鍵.15、1【分析】利用角角定理證明△BAD∽△BCA,然后利用相似三角形的性質(zhì)得到,求得BC的長,從而使問題得解.【詳解】解:∵∠BAD=∠C,∠B=∠B,∴△BAD∽△BCA,∴.∵AB=6,BD=4,∴,∴BC=9,∴CD=BC-BD=9-4=1.【點睛】本題考查相似三角形的判定與性質(zhì),熟記判定方法準(zhǔn)確找到相似三角形對應(yīng)邊是本題的解題關(guān)鍵..16、①②④【分析】根據(jù)二次函數(shù)的圖象和性質(zhì)逐一對選項進行分析即可.【詳解】①∵∴即,故①正確;②由圖象可知,若,,在拋物線上,則,故②正確;③∵拋物線與直線有交點時,即有解時,要求所以若關(guān)于的方程有實數(shù)根,則,故③錯誤;④當(dāng)時,∵∴,故④正確.故答案為①②④【點睛】本題主要考查二次函數(shù)的圖象和性質(zhì),掌握二次函數(shù)的圖象和性質(zhì)是解題的關(guān)鍵.17、【分析】根據(jù)菱形的對稱性,在AB上找到點P關(guān)于BD的對稱點,過點作Q⊥CD于Q,交BD于點K,連接PK,過點A作AE⊥CD于E,根據(jù)垂線段最短和平行線之間的距離處處相等,可得此時最小,且最小值為的長,,然后利用銳角三角函數(shù)求AE即可.【詳解】解:根據(jù)菱形的對稱性,在AB上找到點P關(guān)于BD的對稱點,過點作Q⊥CD于Q,交BD于點K,連接PK,過點A作AE⊥CD于E根據(jù)對稱性可知:PK=K,∴此時=,根據(jù)垂線段最短和平行線之間的距離處處相等,∴此時最小,且最小值為的長,∵在菱形中,,∴,∠ADE=180°-∠A=60°在Rt△ADE中,AE=AD·sin∠ADE=∴即的最小值為故答案為.【點睛】此題考查的是菱形的性質(zhì)、求兩線段之和的最值問題和銳角三角函數(shù),掌握菱形的性質(zhì)、垂線段最短、平行線之間的距離處處相等和用銳角三角函數(shù)解直角三角形是解決此題的關(guān)鍵.18、【分析】根據(jù)根的判別式可得方程有實數(shù)根則,然后列出不等式計算即可.【詳解】根據(jù)題意得:解得:故答案為:【點睛】本題考查的是一元二次方程的根的判別式,根據(jù)一元二次方程的根的情況確定與0的關(guān)系是關(guān)鍵.三、解答題(共78分)19、證明見解析【分析】求得判別式并分解得到平方與正數(shù)的和,得到判別式大于0即可證明.【詳解】證明:.無論為何值,拋物線與軸總有兩個交點.【點睛】此題考查一元二次方程的判別式,正確計算并掌握判別式的三種情況即可正確解題.20、(1)當(dāng)t為秒時,S最大值為;(1);(3)或或.【分析】(1)過點P作PH⊥AC于H,由△APH∽△ABC,得出,從而求出AB,再根據(jù),得出PH=3﹣t,則△AQP的面積為:AQ?PH=t(3﹣t),最后進行整理即可得出答案;(1)連接PP′交QC于E,當(dāng)四邊形PQP′C為菱形時,得出△APE∽△ABC,,求出AE=﹣t+4,再根據(jù)QE=AE﹣AQ,QE=QC得出﹣t+4=﹣t+1,再求t即可;(3)由(1)知,PD=﹣t+3,與(1)同理得:QD=﹣t+4,從而求出PQ=,在△APQ中,分三種情況討論:①當(dāng)AQ=AP,即t=5﹣t,②當(dāng)PQ=AQ,即=t,③當(dāng)PQ=AP,即=5﹣t,再分別計算即可.【詳解】解:(1)如圖甲,過點P作PH⊥AC于H,∵∠C=90°,∴AC⊥BC,∴PH∥BC,∴△APH∽△ABC,∴,∵AC=4cm,BC=3cm,∴AB=5cm,∴,∴PH=3﹣t,∴△AQP的面積為:S=×AQ×PH=×t×(3﹣t)=﹣(t﹣)1+,∴當(dāng)t為秒時,S最大值為cm1.(1)如圖乙,連接PP′,PP′交QC于E,當(dāng)四邊形PQP′C為菱形時,PE垂直平分QC,即PE⊥AC,QE=EC,∴△APE∽△ABC,∴,∴AE==﹣t+4QE=AE﹣AQ═﹣t+4﹣t=﹣t+4,QE=QC=(4﹣t)=﹣t+1,∴﹣t+4=﹣t+1,解得:t=,∵0<<4,∴當(dāng)四邊形PQP′C為菱形時,t的值是s;(3)由(1)知,PD=﹣t+3,與(1)同理得:QD=AD﹣AQ=﹣t+4∴PQ==,在△APQ中,①當(dāng)AQ=AP,即t=5﹣t時,解得:t1=;②當(dāng)PQ=AQ,即=t時,解得:t1=,t3=5;③當(dāng)PQ=AP,即=5﹣t時,解得:t4=0,t5=;∵0<t<4,∴t3=5,t4=0不合題意,舍去,∴當(dāng)t為s或s或s時,△APQ是等腰三角形.【點睛】本題考查相似形綜合題.21、(1)1;BE1+CD1=4AD1;(1)能滿足(1)中的結(jié)論,見解析;(3)1【分析】(1)依據(jù)旋轉(zhuǎn)性質(zhì)可得:DE=DA=CD,∠BDE=∠ADB=60°,再證明:△BDE≌△BDA,利用勾股定理可得結(jié)論;(1)將△ACD繞點A順時針旋轉(zhuǎn)110°得到△ABD′,再證明:∠D′BE=∠D′AE=90°,利用勾股定理即可證明結(jié)論仍然成立;(3)從(1)中發(fā)現(xiàn):∠CBE=30°,即:點D運動路徑是線段;分別求出點D位于D1時和點D運動到M時,對應(yīng)的BE長度即可得到結(jié)論.【詳解】解:(1)如圖1,∵AB=AC,∠BAC=110°,∴∠ABC=∠ACB=30°,∵AD=DC∴∠CAD=∠ACB=30°,∠ADB=∠CAD+∠ACB=60°,∴∠BAD=90°,由旋轉(zhuǎn)得:DE=DA=CD,∠BDE=∠ADB=60°∴△BDE≌△BDA(SAS)∴∠BED=∠BAD=90°,BE=AB=∴BE1+CD1=BE1+DE1=BD1∵=cos∠ADB=cos60°=∴BD=1AD∴BE1+CD1=4AD1;故答案為:;BE1+CD1=4AD1;(1)能滿足(1)中的結(jié)論.如圖1,將△ACD繞點A順時針旋轉(zhuǎn)110°得到△ABD′,使AC與AB重合,∵∠DAD′=110°,∠BAD′=∠CAD,∠ABD′=∠ACB=30°,AD′=AD=DE,∠DAE=∠AED=30°,BD′=CD,∠AD′B=∠ADC∴∠D′AE=90°∵∠ADB+∠ADC=180°∴∠ADB+∠AD′B=180°∴A、D、B、D′四點共圓,同理可證:A、B、E、D四點共圓,A、E、B、D′四點共圓;∴∠D′BE=90°∴BE1+BD′1=D′E1∵在△AD′E中,∠AED′=30°,∠EAD′=90°∴D′E=1AD′=1AD∴BE1+BD′1=(1AD)1=4AD1∴BE1+CD1=4AD1.(3)由(1)知:經(jīng)過B、E、D三點的圓必定經(jīng)過D′、A,且該圓以D′E為直徑,該圓最小即D′E最小,∵D′E=1AD∴當(dāng)AD最小時,經(jīng)過B、E、D三點的圓最小,此時,AD⊥BC如圖3,過A作AD1⊥BC于D1,∵∠ABC=30°∴BD1=AB?cos∠ABC=cos30°=3,AD1=∴D1M=BD1﹣BM=3﹣1=1由(1)知:在D運動過程中,∠CBE=30°,∴點D運動路徑是線段;當(dāng)點D位于D1時,由(1)中結(jié)論得:,∴BE1=當(dāng)點D運動到M時,易求得:BE1=∴E點經(jīng)過的路徑長=BE1+BE1=1故答案為:1.【點睛】本題考查的是圓的綜合,綜合性很強,難度系數(shù)較大,運用到了全等和勾股定理等相關(guān)知識需要熟練掌握相關(guān)基礎(chǔ)知識.22、(1);;(2);【分析】(1)先把左邊的4移項到右邊成-4,再配方,兩邊同時加32,左邊得到完全平方,再得出兩個一元一次方程進行解答;(2)先化成一元二次方程的一般式,得出a、b、c,計算b2-4ac判定根的情況,最后運用求根公式即可求解.【詳解】解:(1)x2+6x+4=0x2+6x=-4x2+6x+9=-4+9(x+3)2=5;(2)5x2-3x=x+1,5x2-4x-1=0,b2-4ac=(-4)2-4×5×(-1)=36,,【點睛】本題主要考查了運用配方法、公式法解一元二次方程,運用公式法解方程時,要先把方程化為一般式,找到a、b、c的值,然后用b2-4ac判定根的情況,最后運用公式即可求解.23、(1);(2)2<x<8;(3)點P的坐標(biāo)為(2,0)或(0,0)時,△COD與△ADP相似.【解析】(1)首先確定A、B兩點坐標(biāo),再利用待定系數(shù)法即可解決問題;(2)觀察圖象,根據(jù)A、B兩點的橫坐標(biāo)即可確定.(3)分兩種情形討論求解即可.【詳解】解:(1)∵點A(m,4)和點B(8,n)在圖象上,∴,即A(2,4),B(8,1)把A(2,4),B(8,1)兩點代入得解得:,所以直線AB的解析式為:(2)由圖象可得,當(dāng)x>0時,的解集為2<x<8.(3)由(1)得直線AB的解析式為,當(dāng)x=0時,y=5,當(dāng)y=0時,x=10,即C點坐標(biāo)為(0,5),D點坐標(biāo)為(10,0)∴OC=5,OD=10,∴設(shè)P點坐標(biāo)為(a,0),由題可以,點P在點D左側(cè),則PD=10-a由∠CDO=∠ADP可得①當(dāng)時,△COD∽△APD,此時AP∥CO,,解得a=2,故點P坐標(biāo)為(2,0)②當(dāng)時,△COD∽△PAD,即,解得a=0,即點P的坐標(biāo)為(0,0)因此,點P的坐標(biāo)為(2,0)或(0,0)時,△COD與△ADP相似.【點睛】本題是反比例函數(shù)綜合題,還考查了一次函數(shù)的性質(zhì)、相似三角形的判定和性質(zhì)等知識,解題的關(guān)鍵是熟練掌握待定系數(shù)法確定函數(shù)解析式,學(xué)會用分類討論的思想思考問題,屬于中考??碱}型.24、(1)x1=2+,x2=2﹣;(2)x1=1,x2=0.2【分析】(1)利用配方法求解,可得答案;(2)利用因式分解法求解,可得答案.【詳解】(1)∵x2﹣4x=1,∴x2﹣4x+4=1+4,即(x﹣2)2=7,則x﹣2=±,解得:x1=2+,x2=2﹣;(2)∵5x(x﹣1)﹣(x﹣1)=0,∴(x﹣1)(5x﹣1)=0,則x﹣1=0或5x﹣1=0,解得:x1=1,x2=0.2.【點睛】本題主要考查一元二次方程的解法,掌握配方法和因式分解法解方程,是解題的關(guān)鍵.25、(1)見解析;(2);(3),P點坐標(biāo)為或【分析】(1)由角平分線求出∠MOP=∠NOP=∠AOB=30°,再證出∠OMP=∠OPN,證明△MOP∽△PON,即可得出結(jié)論;(2)由∠MPN是∠AOB的“相關(guān)角”,判斷出△MOP∽△PON,得出∠OMP=∠OPN,即可得出∠MPN=180°﹣α;過點M作MH⊥OB于H,由三角形的面積公式得出:S△MON=ON?MH,即可得出結(jié)論;(3)設(shè)點C(a,b),則ab=3,過點C作CH⊥OA于H;分兩種情況:①當(dāng)點B在y軸正半軸上時;當(dāng)點A在x軸的負半軸上時,BC=3CA不可能;當(dāng)點A在x軸的正半軸上時;先求出,由平行線得出△ACH∽△ABO,得出比例式:,得出OB,OA,求出OA?OB,根據(jù)∠APB是∠AOB的“相關(guān)角”,得出OP,即可得出點P的坐標(biāo);②當(dāng)點B在y軸的負半軸上時;同①的方
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 標(biāo)準(zhǔn)離婚合同全文
- 新能源汽車銷售代理合同
- 商品房買賣合同示例
- 畢業(yè)生檔案托管合同協(xié)議書
- 廣告投放合同「樣本」
- 多人合伙經(jīng)營合同范例大全
- 屋頂防水修繕項目合同
- 戶外廣告LED大屏租賃合同
- 稻谷購銷合同樣本
- 腎性貧血的治療課件
- 2025中鐵集裝箱運輸有限責(zé)任公司招聘46人(京外地區(qū)崗位)筆試參考題庫附帶答案詳解
- 中國農(nóng)業(yè)大學(xué)人文與發(fā)展學(xué)院管理服務(wù)崗位招聘筆試真題2023
- 《木蘭詩》第二課時(公開課)課件
- 核電項目人橋吊車抗震計算書版
- 淺談簽證合同索賠培訓(xùn)課件
- 2023年江蘇經(jīng)貿(mào)職業(yè)技術(shù)學(xué)院單招職業(yè)適應(yīng)性測試筆試題庫及答案解析
- 揭陽市基層診所醫(yī)療機構(gòu)衛(wèi)生院社區(qū)衛(wèi)生服務(wù)中心村衛(wèi)生室地址信息
- 晉中項目投決會報告
- 二年級下冊數(shù)學(xué)課件-1.3 分草莓 北師大版(共14張PPT)
- 2022年中小學(xué)心理健康教育指導(dǎo)綱要
- 高架橋梁混凝土工程專項施工方案
評論
0/150
提交評論