2022年廣東省深圳市福田區(qū)十校聯(lián)考數(shù)學(xué)九年級上冊期末檢測模擬試題含解析_第1頁
2022年廣東省深圳市福田區(qū)十校聯(lián)考數(shù)學(xué)九年級上冊期末檢測模擬試題含解析_第2頁
2022年廣東省深圳市福田區(qū)十校聯(lián)考數(shù)學(xué)九年級上冊期末檢測模擬試題含解析_第3頁
2022年廣東省深圳市福田區(qū)十校聯(lián)考數(shù)學(xué)九年級上冊期末檢測模擬試題含解析_第4頁
2022年廣東省深圳市福田區(qū)十校聯(lián)考數(shù)學(xué)九年級上冊期末檢測模擬試題含解析_第5頁
已閱讀5頁,還剩21頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報或認(rèn)領(lǐng)

文檔簡介

2022-2023學(xué)年九上數(shù)學(xué)期末模擬試卷注意事項1.考試結(jié)束后,請將本試卷和答題卡一并交回.2.答題前,請務(wù)必將自己的姓名、準(zhǔn)考證號用0.5毫米黑色墨水的簽字筆填寫在試卷及答題卡的規(guī)定位置.3.請認(rèn)真核對監(jiān)考員在答題卡上所粘貼的條形碼上的姓名、準(zhǔn)考證號與本人是否相符.4.作答選擇題,必須用2B鉛筆將答題卡上對應(yīng)選項的方框涂滿、涂黑;如需改動,請用橡皮擦干凈后,再選涂其他答案.作答非選擇題,必須用05毫米黑色墨水的簽字筆在答題卡上的指定位置作答,在其他位置作答一律無效.5.如需作圖,須用2B鉛筆繪、寫清楚,線條、符號等須加黑、加粗.一、選擇題(每題4分,共48分)1.如圖,AB是⊙O的直徑,點C,D,E在⊙O上,若∠AED=20°,則∠BCD的度數(shù)為()A.100° B.110° C.115° D.120°2.“拋一枚均勻硬幣,落地后正面朝上”這一事件是()A.必然事件 B.隨機(jī)事件 C.確定事件 D.不可能事件3.若,,則的值為()A. B. C. D.4.如圖,在四邊形ABCD中,BD平分∠ABC,∠BAD=∠BDC=90°,E為BC的中點,AE與BD相交于點F,若BC=4,∠CBD=30°,則AE的長為()A. B. C. D.5.如圖,點A是反比例函數(shù)y=(x>0)的圖象上任意一點,AB∥x軸交反比例函數(shù)y=﹣的圖象于點B,以AB為邊作?ABCD,其中C、D在x軸上,則S□ABCD為()A.2 B.3 C.4 D.56.如圖所示,四邊形OABC是正方形,邊長為6,點A、C分別在x軸、y軸的正半軸上,點D在OA上,且D點的坐標(biāo)為(2,0),P是OB上一動點,則PA+PD的最小值為()A.2 B. C.4 D.67.下面是“育”“才”“水”“井"四個字的甲骨文,是中心對稱圖形但不是軸對稱圖形的是()A. B. C. D.8.在平行四邊形ABCD中,點E是邊AD上一點,且AE=2ED,EC交對角線BD于點F,則等于()A. B. C. D.9.拋物線先向下平移1個單位,再向左平移2個單位,所得的拋物線是()A.. B.C. D.10.已知一個扇形的弧長為3π,所含的圓心角為120°,則半徑為()A.9 B.3 C. D.11.二次函數(shù)y=x2+2的對稱軸為()A. B. C. D.12.如圖,以(1,-4)為頂點的二次函數(shù)y=ax2+bx+c的圖象與x軸負(fù)半軸交于A點,則一元二次方程ax2+bx+c=0的正數(shù)解的范圍是()A.2<x<3 B.3<x<4 C.4<x<5 D.5<x<6二、填空題(每題4分,共24分)13.如圖,已知正方形ABCD的邊長為1,點M是BC邊上的動點(不與B,C重合),點N是AM的中點,過點N作EF⊥AM,分別交AB,BD,CD于點E,K,F(xiàn),設(shè)BM=x.(1)AE的長為______(用含x的代數(shù)式表示);(2)設(shè)EK=2KF,則的值為______.14.=___15.若a,b是一元二次方程的兩根,則________.16.當(dāng)時,函數(shù)的最大值是8則=_________.17.在一個不透明的口袋中,裝有4個紅球和若干個白球,這些球除顏色外其余都相同,如果摸到紅球的概率是,那么口袋中有白球_____個18.將拋物線先向右平移1個單位長度,再向上平移2個單位長度,得到的拋物線的解析式是______.三、解答題(共78分)19.(8分)如圖,甲分為三等分?jǐn)?shù)字轉(zhuǎn)盤,乙為四等分?jǐn)?shù)字轉(zhuǎn)盤,自由轉(zhuǎn)動轉(zhuǎn)盤.(1)轉(zhuǎn)動甲轉(zhuǎn)盤,指針指向的數(shù)字小于3的概率是;(2)同時自由轉(zhuǎn)動兩個轉(zhuǎn)盤,用列舉的方法求兩個轉(zhuǎn)盤指針指向的數(shù)字均為奇數(shù)的概率.20.(8分)如圖,已知Rt△ABC中,∠ABC=90°,先把△ABC繞點B順時針旋轉(zhuǎn)90°至△DBE后,再把△ABC沿射線AB平移至△FEG,DE、FG相交于點H.判斷線段DE、FG的位置關(guān)系,并說明理由.21.(8分)如圖,在正方形中,為邊的中點,點在邊上,且,延長交的延長線于點.(1)求證:△∽△.(2)若,求的長.22.(10分)如圖1,在Rt△ABC中,∠B=90°,BC=2AB=8,點D,E分別是邊BC,AC的中點,連接DE,將△EDC繞點C按順時針方向旋轉(zhuǎn),記旋轉(zhuǎn)角為α.(1)問題發(fā)現(xiàn)①當(dāng)時,;②當(dāng)時,(2)拓展探究試判斷:當(dāng)0°≤α<360°時,的大小有無變化?請僅就圖2的情況給出證明.(3)問題解決當(dāng)△EDC旋轉(zhuǎn)至A、D、E三點共線時,直接寫出線段BD的長.23.(10分)自開展“全民健身運動”以來,喜歡戶外步行健身的人越來越多,為方便群眾步行健身,某地政府決定對一段如圖1所示的坡路進(jìn)行改造.如圖2所示,改造前的斜坡米,坡度為;將斜坡的高度降低米后,斜坡改造為斜坡,其坡度為.求斜坡的長.(結(jié)果保留根號)24.(10分)已知,在△ABC中,∠BAC=90°,∠ABC=45°,點D為直線BC上一動點(點D不與點B、C重合),以AD為邊做正方形ADEF,連接CF.(1)如圖①,當(dāng)點D在線段BC上時,直接寫出線段CF、BC、CD之間的數(shù)量關(guān)系.(2)如圖②,當(dāng)點D在線段BC的延長線上時,其他件不變,則(1)中的三條線段之間的數(shù)量關(guān)系還成立嗎?如成立,請予以證明,如不成立,請說明理由;(3)如圖③,當(dāng)點D在線段BC的反向延長線上時,且點A、F分別在直線BC兩側(cè),其他條件不變;若正方形ADEF的邊長為4,對角線AE、DF相交于點O,連接OC,請直接寫出OC的長度.25.(12分)如圖,四邊形中的三個頂點在⊙上,是優(yōu)弧上的一個動點(不與點、重合).(1)當(dāng)圓心在內(nèi)部,∠ABO+∠ADO=70°時,求∠BOD的度數(shù);(2)當(dāng)點A在優(yōu)弧BD上運動,四邊形為平行四邊形時,探究與的數(shù)量關(guān)系.26.如圖,拋物線的頂點坐標(biāo)為,點的坐標(biāo)為,為直線下方拋物線上一點,連接,.(1)求拋物線的解析式.(2)的面積是否有最大值?如果有,請求出最大值和此時點的坐標(biāo);如果沒有,請說明理由.(3)為軸右側(cè)拋物線上一點,為對稱軸上一點,若是以點為直角頂點的等腰直角三角形,請直接寫出點的坐標(biāo).

參考答案一、選擇題(每題4分,共48分)1、B【分析】連接AD,BD,由圓周角定理可得∠ABD=20°,∠ADB=90°,從而可求得∠BAD=70°,再由圓的內(nèi)接四邊形對角互補(bǔ)得到∠BCD=110°.【詳解】如下圖,連接AD,BD,∵同弧所對的圓周角相等,∴∠ABD=∠AED=20°,∵AB為直徑,∴∠ADB=90°,∴∠BAD=90°-20°=70°,∴∠BCD=180°-70°=110°.故選B【點睛】本題考查圓中的角度計算,熟練運用圓周角定理和內(nèi)接四邊形的性質(zhì)是關(guān)鍵.2、B【詳解】隨機(jī)事件.根據(jù)隨機(jī)事件的定義,隨機(jī)事件就是可能發(fā)生,也可能不發(fā)生的事件,即可判斷:拋1枚均勻硬幣,落地后可能正面朝上,也可能反面朝上,故拋1枚均勻硬幣,落地后正面朝上是隨機(jī)事件.故選B.3、D【分析】先利用平方差公式得到=(a+b)(a-b),再把,整體代入即可.【詳解】解:=(a+b)(a-b)==.故答案為D.【點睛】本題考查了平方差公式,把a(bǔ)+b和a-b看成一個整體是解題的關(guān)鍵.4、D【分析】如圖,作EH⊥AB于H,利用∠CBD的余弦可求出BD的長,利用∠ABD的余弦可求出AB的長,利用∠EBH的正弦和余弦可求出BH、HE的長,即可求出AH的長,利用勾股定理求出AE的長即可.【詳解】如圖,作EH⊥AB于H,在Rt△BDC中,BC=4,∠CBD=30°,∴BD=BC·cos30°=2,∵BD平分∠ABC,∠CBD=30°,∴∠ABD=30°,∠EBH=60°,在Rt△ABD中,∠ABD=30°,BD=2,∴AB=BD·cos30°=3,∵點E為BC中點,∴BE=EC=2,在Rt△BEH中,BH=BE·cos∠EBH=1,HE=EH·sin∠EBH=,∴AH=AB-BH=2,在Rt△AEH中,AE==,故選:D.【點睛】本題考查解直角三角形的應(yīng)用,正確作出輔助線構(gòu)建直角三角形并熟記三角函數(shù)的定義是解題關(guān)鍵.5、D【解析】設(shè)A的縱坐標(biāo)是b,則B的縱坐標(biāo)也是b.把y=b代入y=得,b=,則x=,,即A的橫坐標(biāo)是,;同理可得:B的橫坐標(biāo)是:﹣.則AB=﹣(﹣)=.則S□ABCD=×b=1.故選D.6、A【解析】試題解析:連接CD,交OB于P.則CD就是PD+PA和的最小值.

∵在直角△OCD中,∠COD=90°,OD=2,OC=6,

∴CD=,

∴PD+PA=PD+PC=CD=2.

∴PD+PA和的最小值是2.

故選A.7、C【解析】根據(jù)中心對稱圖形與軸對稱圖形的區(qū)別判斷即可,軸對稱圖形一定要沿某直線折疊后直線兩旁的部分互相重合,關(guān)鍵抓兩點:一是沿某直線折疊,二是兩部分互相重合;中心對稱圖形是圖形繞某一點旋轉(zhuǎn)180°后與原來的圖形重合,關(guān)鍵也是抓兩點:一是繞某一點旋轉(zhuǎn),二是與原圖形重合.【詳解】解:A.不是中心對稱圖形也不是軸對稱圖形,不符合題意;B.是軸對稱圖形不是中心對稱圖形,不符合題意;C.是中心對稱圖形不是軸對稱圖形,符合題意;D.是軸對稱圖形也是中心對稱圖形,不符合題意;故答案為:C.【點睛】本題考查的知識點是軸對稱圖形與中心對稱圖形的判斷,熟記二者的區(qū)別是解題的關(guān)鍵.8、A【解析】試題分析:如圖,∵四邊形ABCD為平行四邊形,∴ED∥BC,BC=AD,∴△DEF∽△BCF,∴,設(shè)ED=k,則AE=2k,BC=3k,∴==,故選A.考點:1.相似三角形的判定與性質(zhì);2.平行四邊形的性質(zhì).9、A【分析】根據(jù)函數(shù)圖象平移的法則“左加右減,上加下減”的原則進(jìn)行解答即可.【詳解】由“上加下減”的原則可知,將拋物線y=3x2先向向下平移1個單位可得到拋物線y=3x2-1;

由“左加右減”的原則可知,將拋物線y=3x2-1先向左平移2個單位可得到拋物線.

故選A.【點睛】本題考查二次函數(shù)圖象與幾何變換,解題的關(guān)鍵是掌握函數(shù)圖象平移的法則“左加右減,上加下減”的原則.10、C【分析】根據(jù)弧長的公式進(jìn)行計算即可.【詳解】解:設(shè)半徑為r,∵扇形的弧長為3π,所含的圓心角為120°,∴=3π,∴r=,故選:C.【點睛】此題考查的是根據(jù)弧長和圓心角求半徑,掌握弧長公式是解決此題的關(guān)鍵.11、B【分析】根據(jù)二次函數(shù)的性質(zhì)解答即可.【詳解】二次函數(shù)y=x2+2的對稱軸為直線.故選B.【點睛】本題考查了二次函數(shù)y=a(x-h)2+k(a,b,c為常數(shù),a≠0)的性質(zhì),熟練掌握二次函數(shù)y=a(x-h)2+k的性質(zhì)是解答本題的關(guān)鍵.y=a(x-h)2+k是拋物線的頂點式,a決定拋物線的形狀和開口方向,其頂點是(h,k),對稱軸是x=h.12、C【解析】試題解析:∵二次函數(shù)y=ax2+bx+c的頂點為(1,-4),∴對稱軸為x=1,而對稱軸左側(cè)圖象與x軸交點橫坐標(biāo)的取值范圍是-3<x<-2,∴右側(cè)交點橫坐標(biāo)的取值范圍是4<x<1.故選C.考點:圖象法求一元二次方程的近似根.二、填空題(每題4分,共24分)13、x【分析】(1)根據(jù)勾股定理求得AM,進(jìn)而得出AN,證得△AEN∽△AMB,由相似三角形的性質(zhì)即可求得AE的長;(2)連接AK、MG、CK,構(gòu)建全等三角形和直角三角形,證明AK=MK=CK,再根據(jù)四邊形的內(nèi)角和定理得∠AKM=90°,利用直角三角形斜邊上的中線等于斜邊的一半得NK=AM=AN,然后根據(jù)相似三角形的性質(zhì)求得==x,即可得出=x.【詳解】(1)解:∵正方形ABCD的邊長為1,BM=x,∴AM=,∵點N是AM的中點,∴AN=,∵EF⊥AM,∴∠ANE=90°,∴∠ANE=∠ABM=90°,∵∠EAN=∠MAB,∴△AEN∽△AMB,∴=,即=,∴AE=,故答案為:;(2)解:如圖,連接AK、MG、CK,由正方形的軸對稱性△ABK≌△CBK,∴AK=CK,∠KAB=∠KCB,∵EF⊥AM,N為AM中點,∴AK=MK,∴MK=CK,∠KMC=∠KCM,∴∠KAB=∠KMC,∵∠KMB+∠KMC=180°,∴∠KMB+∠KAB=180°,又∵四邊形ABMK的內(nèi)角和為360°,∠ABM=90°,∴∠AKM=90°,在Rt△AKM中,AM為斜邊,N為AM的中點,∴KN=AM=AN,∴=,∵△AEN∽△AMB,∴==x,∴=x,故答案為:x.【點睛】本題是四邊形的綜合題,考查了正方形的性質(zhì),相似三角形的判定和性質(zhì),全等三角形判定和性質(zhì),等腰三角形的性質(zhì),以及直角三角形斜邊.上的中線的性質(zhì),證得KN=

AN是解題的關(guān)鍵.14、【分析】原式利用特殊角的三角函數(shù)值計算即可得到結(jié)果.【詳解】解:原式==.故答案為:.【點睛】此題考查了實數(shù)的運算,熟練掌握運算法則是解本題的關(guān)鍵.15、【分析】將通分變形為,然后利用根與系數(shù)的關(guān)系即可求解.【詳解】∵a、b是一元二次方程的兩根∴,∴故答案為:.【點睛】本題考查了一元二次方程的根與系數(shù)的關(guān)系,熟練掌握,是解題的關(guān)鍵.16、或【分析】先求出二次函數(shù)的對稱軸,根據(jù)開口方向分類討論決定取值,列出關(guān)于a的方程,即可求解;【詳解】解:函數(shù),則對稱軸為x=2,對稱軸在范圍內(nèi),當(dāng)a<0時,開口向下,有最大值,最大值在x=2處取得,即=8,解得a=;當(dāng)a>0時,開口向上,最大值在x=-3處取得,即=8,解得a=;故答案為:或;【點睛】本題主要考查了二次函數(shù)的最值,掌握二次函數(shù)的性質(zhì)是解題的關(guān)鍵.17、1【分析】設(shè)白球有x個,根據(jù)摸到紅球的概率為列出方程,求出x的值即可.【詳解】設(shè)白球有x個,根據(jù)題意得:解得:x=1.故答案為1.【點睛】本題考查了概率的基本計算,根據(jù)題意列出方程就可以得出答案.用到的知識點為:概率=所求情況數(shù)與總情況數(shù)之比.18、【分析】先確定拋物線y=x1的頂點坐標(biāo)為(0,0),再利用點平移的規(guī)律得到點(0,0)平移所得對應(yīng)點的坐標(biāo)為(1,1),然后根據(jù)頂點式寫出新拋物線解析式.【詳解】解:拋物線y=x1的頂點坐標(biāo)為(0,0),點(0,0)先向右平移1個單位長度,再向上平移1個單位長度所得對應(yīng)點的坐標(biāo)為(1,1),所以新拋物線的解析式為y=(x-1)1+1故答案為y=(x-1)1+1.【點睛】本題考查了二次函數(shù)圖象與幾何變換:由于拋物線平移后的形狀不變,故a不變,所以求平移后的拋物線解析式通??衫脙煞N方法:一是求出原拋物線上任意兩點平移后的坐標(biāo),利用待定系數(shù)法求出解析式;二是只考慮平移后的頂點坐標(biāo),即可求出解析式.三、解答題(共78分)19、(1);(2)【解析】(1)根據(jù)甲盤中的數(shù)字,可判斷求出概率;(2)列出符合條件的所有可能,然后確定符合條件的可能,求出概率即可.【詳解】(1)甲轉(zhuǎn)盤共有1,2,3三個數(shù)字,其中小于3的有1,2,∴P(轉(zhuǎn)動甲轉(zhuǎn)盤,指針指向的數(shù)字小于3)=,故答案為.(2)樹狀圖如下:由樹狀圖知,共有12種等可能情況,其中兩個轉(zhuǎn)盤指針指向的數(shù)字為奇數(shù)的有4種情況,所以兩個轉(zhuǎn)盤指針指向的數(shù)字均為奇數(shù)的概率P==.20、見解析【分析】根據(jù)旋轉(zhuǎn)和平移可得∠DEB=∠ACB,∠GFE=∠A,再根據(jù)∠ABC=90°可得∠A+∠ACB=90°,進(jìn)而得到∠DEB+∠GFE=90°,從而得到DE、FG的位置關(guān)系是垂直.【詳解】解:DE⊥FG.理由:由題知:Rt△ABC≌Rt△BDE≌Rt△FEG∴∠A=∠BDE=∠GFE∵∠BDE+∠BED=90°∴∠GFE+∠BED=90°,即DE⊥FG.21、(1)詳見解析;(2)1.【分析】(1)先根據(jù)正方形的性質(zhì)、直角三角形的性質(zhì)得出,再加上一組直角相等,根據(jù)相似三角形的判定定理即可得證;(2)先根據(jù)正方形的性質(zhì)、中點的性質(zhì)求出AE的長,再根據(jù)勾股定理求出BE的長,最后根據(jù)相似三角形的性質(zhì)、線段的和差即可得.【詳解】(1)∵四邊形ABCD為正方形,且;(2)∵四邊形ABCD為正方形,點E為AD的中點在中,由(1)知,,即故的長為1.【點睛】本題考查了正方形的性質(zhì)、勾股定理、相似三角形的判定定理與性質(zhì)等知識點,較難的是題(2),由題(1)的結(jié)論聯(lián)系到利用相似三角形的性質(zhì)是解題關(guān)鍵.22、(1)①,②.(2)無變化;理由參見解析.(3),.【分析】(1)①當(dāng)α=0°時,在Rt△ABC中,由勾股定理,求出AC的值是多少;然后根據(jù)點D、E分別是邊BC、AC的中點,分別求出AE、BD的大小,即可求出的值是多少.②α=180°時,可得AB∥DE,然后根據(jù),求出的值是多少即可.(2)首先判斷出∠ECA=∠DCB,再根據(jù),判斷出△ECA∽△DCB,即可求出的值是多少,進(jìn)而判斷出的大小沒有變化即可.(3)根據(jù)題意,分兩種情況:①點A,D,E所在的直線和BC平行時;②點A,D,E所在的直線和BC相交時;然后分類討論,求出線段BD的長各是多少即可.【詳解】(1)①當(dāng)α=0°時,∵Rt△ABC中,∠B=90°,∴AC=,∵點D、E分別是邊BC、AC的中點,∴,BD=8÷2=4,∴.②如圖1,,當(dāng)α=180°時,可得AB∥DE,∵,∴(2)如圖2,,當(dāng)0°≤α<360°時,的大小沒有變化,∵∠ECD=∠ACB,∴∠ECA=∠DCB,又∵,∴△ECA∽△DCB,∴.(3)①如圖3,,∵AC=4,CD=4,CD⊥AD,∴AD=∵AD=BC,AB=DC,∠B=90°,∴四邊形ABCD是矩形,∴BD=AC=.②如圖4,連接BD,過點D作AC的垂線交AC于點Q,過點B作AC的垂線交AC于點P,,∵AC=,CD=4,CD⊥AD,∴AD=,∵點D、E分別是邊BC、AC的中點,∴DE==2,∴AE=AD-DE=8-2=6,由(2),可得,∴BD=.綜上所述,BD的長為或.23、斜坡的長是米.【解析】根據(jù)題意和銳角三角函數(shù)可以求得的長,進(jìn)而得到的長,再根據(jù)銳角三角函數(shù)可以得到的長,最后用勾股定理即可求得的長.【詳解】∵,,坡度為,∴,∴,∴,∵,∴,∵,斜坡的坡度為,∴,即,解得,,∴米,答:斜坡的長是米.【點睛】本題考查解直角三角形的應(yīng)用﹣坡度坡角問題,解答本題的關(guān)鍵是明確題意,利用銳角三角函數(shù)和數(shù)形結(jié)合的思想解答.24、(1)CF+CD=BC;(2)CF+CD=BC不成立,存在CF﹣CD=BC,證明詳見解析;(3).【分析】(1)△ABC是等腰直角三角形,利用SAS即可證明△BAD≌△CAF,從而證得CF=BD,據(jù)此即可證得;(2)同(1)相同,利用SAS即可證得△BAD≌△CAF,從而證得BD=CF,即可得到CF﹣CD=BC;(3)先證明△BAD≌△CAF,進(jìn)而得出△FCD是直角三角形,然后根據(jù)正方形的性質(zhì)即可求得DF的長,再根據(jù)直角三角形斜邊上中線的性質(zhì)即可得到OC的長.【詳解】(1)∵∠BAC=90°,∠ABC=45°,∴∠ACB=∠ABC=45°,∴AB=AC,∵四邊形ADEF是正方形,∴AD=AF,∠DAF=90°,∵∠BAD=90°﹣∠DAC,∠CAF=90°﹣∠DAC,∴∠BAD=∠CAF,∵在△BAD和△CAF中,,∴△BAD≌△CAF(SAS),∴BD=CF,∵BD+CD=BC,∴CF+CD=BC;故答案為:CF+CD=BC;(2)CF+CD=BC不成立,存在CF﹣CD=BC;理由:∵∠BAC=90°,∠ABC=45°,∴∠ACB=∠ABC=45°,∴AB=AC,∵四邊形ADEF是正方形,∴AD=AF,∠DAF=90°,∵∠BAD=90°﹣∠DAC,∠CAF=90°﹣∠DAC,∴∠BAD=∠CAF,∵在△BAD和△CAF中,,∴△BAD≌△CAF(SAS)∴BD=CF∴BC+CD=CF,∴CF﹣CD=BC;(3)∵∠BAC=90°,∠ABC=45°,∴∠ACB=∠ABC=45°,∴AB=AC,∵四邊形ADEF是正方形,∴AD=AF,∠DAF=90°,∵∠BAD=90°﹣∠BAF,∠CAF=90°﹣∠BAF,∴∠BAD=∠CAF,∵在△BAD和△CAF中,,∴△BAD≌△CAF(SAS),∴∠ACF=∠ABD,∵∠ABC=45°,∴∠ABD=135°,∴∠ACF=∠ABD=135°,∴∠FCD=135°﹣45°=90°,∴△FCD是直角三角形.∵正方形ADEF的邊長4且對角線AE、DF相交于點O.∴DF=AD=4,O為DF中點.∴Rt△CDF中,OC=DF=×=.【點睛】此題是四邊形綜合題,主要考查了等腰直角三角形的性質(zhì),正方形與全等三角形的判定與性質(zhì)的綜合應(yīng)用,判斷出△BAD≌△CAF是解本題的關(guān)鍵.25、(1)140°;(2)當(dāng)點A在優(yōu)弧BD上運動,四邊形為平行四邊形時,點O在∠BAD內(nèi)部時,+=60°;點O在∠BAD外部時,|-|=60°.【解析】(1)連接OA,如圖1,根據(jù)等腰三角形的性質(zhì)得∠OAB=∠ABO,∠OAD=∠ADO,則∠OAB+∠OAD=∠ABO+∠ADO=70°,然后根據(jù)圓周角定理易得∠BOD=2∠BAD=140°;(2)分點O在∠BAD內(nèi)部和外部兩種情形分類討論:①當(dāng)點O在∠BAD內(nèi)部時,首先根據(jù)四邊形OBCD為平行四邊形,可得∠BOD=∠BCD,∠OBC=∠ODC;然后根據(jù)∠BAD+∠BCD=180°,∠BAD=∠BOD,求出∠BOD的度數(shù),進(jìn)而求出∠BAD的度數(shù);最后根據(jù)平行四邊形的性質(zhì),求出∠OBC、∠ODC的度數(shù),再根據(jù)∠ABC+∠ADC=180°,求出∠OBA+∠ODA等于多少即可.②當(dāng)點O在∠BAD外部時:Ⅰ、首先根據(jù)四邊形OBCD為平行四邊形,可得∠BOD=∠BCD,∠OBC=∠ODC;然后根據(jù)∠BAD+∠BCD=180°,∠BAD=∠BOD,求出∠BOD的度數(shù),進(jìn)而求出∠BAD的度數(shù);最后根據(jù)OA=OD,OA=OB,判斷出∠OAD=∠ODA,∠OAB=∠OBA,進(jìn)而判斷出∠OBA=∠ODA+60°即可.Ⅱ、首先根據(jù)四邊形OBCD為平行四邊形,可得∠BOD=∠BCD,∠OBC=∠ODC;然后根據(jù)∠BAD+∠BCD=180°,∠BAD=∠BOD,求出∠BOD的度數(shù),進(jìn)而求出∠BAD的度數(shù);最后根據(jù)OA=OD,OA=OB,判斷出∠OAD=∠ODA,∠OAB=∠OBA,進(jìn)而判斷出∠ODA=∠OBA+60°即可.【詳解】(1)連接OA,如圖1,∵OA=OB,OA=OD,∵∠OAB=∠ABO,∠OAD=∠ADO,∴∠OAB+∠OAD=∠ABO+∠ADO=70°,即∠BAD=70°,∴∠BOD=2∠BAD=140°;(2)①如圖2,,∵四邊形OBCD為平行四邊形,∴∠BOD=∠BCD,∠OBC=∠ODC,又∵∠BAD+∠BCD=180°,∠BAD=∠BOD,∴∠BOD+∠BOD=180°,∴∠BOD=120°,∠BAD=120°÷2=60°,∴∠OBC=∠ODC=180°-120°=60°,又∵∠ABC+∠ADC=180°,∴∠OBA+∠ODA=180°-(∠OBC+∠ODC)=180°-(60°+60°)=180°-120°=60°②Ⅰ、如圖3,,∵四邊形OBCD為平行四邊形,∴∠BOD=∠BCD,∠OBC=∠ODC,又∵∠BAD+∠BCD=180°,∠BAD=∠BOD,∴∠BOD+∠BOD=180°,∴∠BOD=120°,∠BAD=120°÷2=60°,∴∠OAB=∠OAD+∠BAD=∠OAD+60°,∵OA=OD,OA=OB,∴∠OAD=∠ODA,∠OAB=∠OBA,∴∠OBA-∠ODA=60°.Ⅱ、如圖4,,∵四邊形OBCD為平行四邊形,∴∠BOD=∠BCD,∠OBC=∠ODC,又∵∠BAD+∠BCD=180°,∠BAD=∠BOD,∴∠BOD+∠BOD=

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論