




版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領
文檔簡介
2022-2023學年高三上數(shù)學期末模擬試卷注意事項:1.答卷前,考生務必將自己的姓名、準考證號填寫在答題卡上。2.回答選擇題時,選出每小題答案后,用鉛筆把答題卡上對應題目的答案標號涂黑,如需改動,用橡皮擦干凈后,再選涂其它答案標號。回答非選擇題時,將答案寫在答題卡上,寫在本試卷上無效。3.考試結束后,將本試卷和答題卡一并交回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.若復數(shù)滿足,則()A. B. C.2 D.2.中,點在邊上,平分,若,,,,則()A. B. C. D.3.設,則關于的方程所表示的曲線是()A.長軸在軸上的橢圓 B.長軸在軸上的橢圓C.實軸在軸上的雙曲線 D.實軸在軸上的雙曲線4.的展開式中有理項有()A.項 B.項 C.項 D.項5.如圖是計算值的一個程序框圖,其中判斷框內應填入的條件是()A.B.C.D.6.設函數(shù)在上可導,其導函數(shù)為,若函數(shù)在處取得極大值,則函數(shù)的圖象可能是()A. B.C. D.7.已知命題:是“直線和直線互相垂直”的充要條件;命題:函數(shù)的最小值為4.給出下列命題:①;②;③;④,其中真命題的個數(shù)為()A.1 B.2 C.3 D.48.已知集合,則=()A. B. C. D.9.已知函數(shù),,若對任意的總有恒成立,記的最小值為,則最大值為()A.1 B. C. D.10.已知,則不等式的解集是()A. B. C. D.11.已知函數(shù),,若對,且,使得,則實數(shù)的取值范圍是()A. B. C. D.12.若,則實數(shù)的大小關系為()A. B. C. D.二、填空題:本題共4小題,每小題5分,共20分。13.已知,滿足約束條件則的最大值為__________.14.已知,則_____15.的展開式中的系數(shù)為________________.16.設,滿足約束條件,若目標函數(shù)的最大值為,則的最小值為______.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(12分)已知函數(shù).(1)求不等式的解集;(2)若對任意恒成立,求的取值范圍.18.(12分)已知橢圓的右頂點為,點在軸上,線段與橢圓的交點在第一象限,過點的直線與橢圓相切,且直線交軸于.設過點且平行于直線的直線交軸于點.(Ⅰ)當為線段的中點時,求直線的方程;(Ⅱ)記的面積為,的面積為,求的最小值.19.(12分)某公司欲投資一新型產品的批量生產,預計該產品的每日生產總成本價格)(單位:萬元)是每日產量(單位:噸)的函數(shù):.(1)求當日產量為噸時的邊際成本(即生產過程中一段時間的總成本對該段時間產量的導數(shù));(2)記每日生產平均成本求證:;(3)若財團每日注入資金可按數(shù)列(單位:億元)遞減,連續(xù)注入天,求證:這天的總投入資金大于億元.20.(12分)在平面直角坐標系中,曲線的參數(shù)方程是(為參數(shù)),以原點為極點,軸正半軸為極軸,建立極坐標系,直線的極坐標方程為.(Ⅰ)求曲線的普通方程與直線的直角坐標方程;(Ⅱ)已知直線與曲線交于,兩點,與軸交于點,求.21.(12分)已知函數(shù)f(x)=xlnx,g(x)=,(1)求f(x)的最小值;(2)對任意,都有恒成立,求實數(shù)a的取值范圍;(3)證明:對一切,都有成立.22.(10分)在平面直角坐標系中,直線的參數(shù)方程為(為參數(shù)),以原點為極點,軸正半軸為極軸建立極坐標系,曲線的極坐標方程為.(Ⅰ)設直線與曲線交于,兩點,求;(Ⅱ)若點為曲線上任意一點,求的取值范圍.
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、D【解析】
把已知等式變形,利用復數(shù)代數(shù)形式的乘除運算化簡,再由復數(shù)模的計算公式計算.【詳解】解:由題意知,,,∴,故選:D.【點睛】本題考查復數(shù)代數(shù)形式的乘除運算,考查復數(shù)模的求法.2、B【解析】
由平分,根據三角形內角平分線定理可得,再根據平面向量的加減法運算即得答案.【詳解】平分,根據三角形內角平分線定理可得,又,,,,..故選:.【點睛】本題主要考查平面向量的線性運算,屬于基礎題.3、C【解析】
根據條件,方程.即,結合雙曲線的標準方程的特征判斷曲線的類型.【詳解】解:∵k>1,∴1+k>0,k2-1>0,
方程,即,表示實軸在y軸上的雙曲線,
故選C.【點睛】本題考查雙曲線的標準方程的特征,依據條件把已知的曲線方程化為是關鍵.4、B【解析】
由二項展開式定理求出通項,求出的指數(shù)為整數(shù)時的個數(shù),即可求解.【詳解】,,當,,,時,為有理項,共項.故選:B.【點睛】本題考查二項展開式項的特征,熟練掌握二項展開式的通項公式是解題的關鍵,屬于基礎題.5、B【解析】
根據計算結果,可知該循環(huán)結構循環(huán)了5次;輸出S前循環(huán)體的n的值為12,k的值為6,進而可得判斷框內的不等式.【詳解】因為該程序圖是計算值的一個程序框圈所以共循環(huán)了5次所以輸出S前循環(huán)體的n的值為12,k的值為6,即判斷框內的不等式應為或所以選C【點睛】本題考查了程序框圖的簡單應用,根據結果填寫判斷框,屬于基礎題.6、B【解析】
由題意首先確定導函數(shù)的符號,然后結合題意確定函數(shù)在區(qū)間和處函數(shù)的特征即可確定函數(shù)圖像.【詳解】函數(shù)在上可導,其導函數(shù)為,且函數(shù)在處取得極大值,當時,;當時,;當時,.時,,時,,當或時,;當時,.故選:【點睛】根據函數(shù)取得極大值,判斷導函數(shù)在極值點附近左側為正,右側為負,由正負情況討論圖像可能成立的選項,是判斷圖像問題常見方法,有一定難度.7、A【解析】
先由兩直線垂直的條件判斷出命題p的真假,由基本不等式判斷命題q的真假,從而得出p,q的非命題的真假,繼而判斷復合命題的真假,可得出選項.【詳解】已知對于命題,由得,所以命題為假命題;關于命題,函數(shù),當時,,當即時,取等號,當時,函數(shù)沒有最小值,所以命題為假命題.所以和是真命題,所以為假命題,為假命題,為假命題,為真命題,所以真命題的個數(shù)為1個.故選:A.【點睛】本題考查直線的垂直的判定和基本不等式的應用,以及復合命題的真假的判斷,注意運用基本不等式時,滿足所需的條件,屬于基礎題.8、D【解析】
先求出集合A,B,再求集合B的補集,然后求【詳解】,所以.故選:D【點睛】此題考查的是集合的并集、補集運算,屬于基礎題.9、C【解析】
對任意的總有恒成立,因為,對恒成立,可得,令,可得,結合已知,即可求得答案.【詳解】對任意的總有恒成立,對恒成立,令,可得令,得當,當,,故令,得當時,當,當時,故選:C.【點睛】本題主要考查了根據不等式恒成立求最值問題,解題關鍵是掌握不等式恒成立的解法和導數(shù)求函數(shù)單調性的解法,考查了分析能力和計算能力,屬于難題.10、A【解析】
構造函數(shù),通過分析的單調性和對稱性,求得不等式的解集.【詳解】構造函數(shù),是單調遞增函數(shù),且向左移動一個單位得到,的定義域為,且,所以為奇函數(shù),圖像關于原點對稱,所以圖像關于對稱.不等式等價于,等價于,注意到,結合圖像關于對稱和單調遞增可知.所以不等式的解集是.故選:A【點睛】本小題主要考查根據函數(shù)的單調性和對稱性解不等式,屬于中檔題.11、D【解析】
先求出的值域,再利用導數(shù)討論函數(shù)在區(qū)間上的單調性,結合函數(shù)值域,由方程有兩個根求參數(shù)范圍即可.【詳解】因為,故,當時,,故在區(qū)間上單調遞減;當時,,故在區(qū)間上單調遞增;當時,令,解得,故在區(qū)間單調遞減,在區(qū)間上單調遞增.又,且當趨近于零時,趨近于正無窮;對函數(shù),當時,;根據題意,對,且,使得成立,只需,即可得,解得.故選:D.【點睛】本題考查利用導數(shù)研究由方程根的個數(shù)求參數(shù)范圍的問題,涉及利用導數(shù)研究函數(shù)單調性以及函數(shù)值域的問題,屬綜合困難題.12、A【解析】
將化成以為底的對數(shù),即可判斷的大小關系;由對數(shù)函數(shù)、指數(shù)函數(shù)的性質,可判斷出與1的大小關系,從而可判斷三者的大小關系.【詳解】依題意,由對數(shù)函數(shù)的性質可得.又因為,故.故選:A.【點睛】本題考查了指數(shù)函數(shù)的性質,考查了對數(shù)函數(shù)的性質,考查了對數(shù)的運算性質.兩個對數(shù)型的數(shù)字比較大小時,底數(shù)相同,則構造對數(shù)函數(shù),結合對數(shù)的單調性可判斷大??;若真數(shù)相同,則結合對數(shù)函數(shù)的圖像或者換底公式可判斷大小;若真數(shù)和底數(shù)都不相同,則可與中間值如1,0比較大小.二、填空題:本題共4小題,每小題5分,共20分。13、1【解析】
先畫出約束條件的可行域,根據平移法判斷出最優(yōu)點,代入目標函數(shù)的解析式,易可得到目標函數(shù)的最大值.【詳解】解:由約束條件得如圖所示的三角形區(qū)域,由于,則,要求的最大值,則求的截距的最小值,顯然當平行直線過點時,取得最大值為:.故答案為:1.【點睛】本題考查線性規(guī)劃求最值問題,我們常用幾何法求最值.14、【解析】
化簡得,利用周期即可求出答案.【詳解】解:,∴函數(shù)的最小正周期為6,∴,,故答案為:.【點睛】本題主要考查三角函數(shù)的性質的應用,屬于基礎題.15、【解析】
在二項展開式的通項中令的指數(shù)為,求出參數(shù)值,然后代入通項可得出結果.【詳解】的展開式的通項為,令,因此,的展開式中的系數(shù)為.故答案為:.【點睛】本題考查二項展開式中指定項系數(shù)的求解,涉及二項展開式通項的應用,考查計算能力,屬于基礎題.16、【解析】
先根據條件畫出可行域,設,再利用幾何意義求最值,將最大值轉化為軸上的截距,只需求出直線,過可行域內的點時取得最大值,從而得到一個關于,的等式,最后利用基本不等式求最小值即可.【詳解】解:不等式表示的平面區(qū)域如圖所示陰影部分,當直線過直線與直線的交點時,目標函數(shù)取得最大,即,即,而.故答案為.【點睛】本題主要考查了基本不等式在最值問題中的應用、簡單的線性規(guī)劃,以及利用幾何意義求最值,屬于基礎題.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17、(1);(2).【解析】
(1)通過討論的范圍,分為,,三種情形,分別求出不等式的解集即可;(2)通過分離參數(shù)思想問題轉化為,根據絕對值不等式的性質求出最值即可得到的范圍.【詳解】(1)當時,原不等式等價于,解得,所以,當時,原不等式等價于,解得,所以此時不等式無解,當時,原不等式等價于,解得,所以綜上所述,不等式解集為.(2)由,得,當時,恒成立,所以;當時,.因為當且僅當即或時,等號成立,所以;綜上的取值范圍是.【點睛】本題考查了解絕對值不等式問題,考查絕對值不等式的性質以及分類討論思想,轉化思想,屬于中檔題.18、(Ⅰ)直線的方程為(Ⅱ)【解析】
(1)設點,利用中點坐標公式表示點B,并代入橢圓方程解得,從而求出直線的方程;(2)設直線的方程為:,表示點,然后聯(lián)立方程,利用相切得出,然后求出切點,再設出設直線的方程,求出點,利用兩點坐標,求出直線的方程,從而求出,最后利用以上已求點的坐標表示面積,根據基本不等式求最值即可.【詳解】解:(Ⅰ)由橢圓,可得:由題意:設點,當為的中點時,可得:代入橢圓方程,可得:所以:所以.故直線的方程為.(Ⅱ)由題意,直線的斜率存在且不為0,故設直線的方程為:令,得:,所以:.聯(lián)立:,消,整理得:.因為直線與橢圓相切,所以.即.設,則,,所以.又直線直線,所以設直線的方程為:.令,得,所以:.因為,所以直線的方程為:.令,得,所以:.所以.又因為..所以(當且僅當,即時等號成立)所以.【點睛】本小題主要考查直線和橢圓的位置關系,考查直線方程以及求橢圓中的最值問題,最值問題一般是把目標式求出,結合目標式特點選用合適的方法求解,側重考查數(shù)學運算的核心素養(yǎng),本題利用了基本不等式求最小值的方法,運算量較大,屬于難題.19、(1);(2)證明見解析;(3)證明見解析.【解析】
(1)求得函數(shù)的導函數(shù),由此求得求當日產量為噸時的邊際成本.(2)將所要證明不等式轉化為證明,構造函數(shù),利用導數(shù)證得,由此證得不等式成立.(3)利用(2)的結論,判斷出,由此結合對數(shù)運算,證得.【詳解】(1)因為所以當時,(2)要證,只需證,即證,設則所以在上單調遞減,所以所以,即;(3)因為又由(2)知,當時,所以所以所以【點睛】本小題主要考查導數(shù)的計算,考查利用導數(shù)證明不等式,考查放縮法證明數(shù)列不等式,屬于難題.20、(1)(x-1)2+y2=4,直線l的直角坐標方程為x-y-2=0;(2)3.【解析】
(1)消參得到曲線的普通方程,利用極坐標和直角坐標方程的互化公式求得直線的直角坐標方程;(2)先得到直線的參數(shù)方程,將直線的參數(shù)方程代入到圓的方程,得到關于的一元二次方程,由根與系數(shù)的關系、參數(shù)的幾何意義進行求解.【詳解】(1)由曲線C的參數(shù)方程(α為參數(shù))(α為參數(shù)),兩式平方相加,得曲線C的普通方程為(x-1)2+y2=4;由直線l的極坐標方程可得ρcosθcos-ρsinθsin=ρcosθ-ρsinθ=2,即直線l的直角坐標方程為x-y-2=0.(2)由題意可得P(2,0),則直線l的參數(shù)方程為(t為參數(shù)).設A,B兩點對應的參數(shù)分別為t1,t2,則|PA|·|PB|=|t1|·|t2|,將(t為參數(shù))代入(x-1)2+y2=4,得t2+t-3=0,則Δ>0,由韋達定理可得t1·t2=-3,所以|PA|·|PB|=|-3|=3.21、(1)(2)((3)見證明【解析】
(1)先求函數(shù)導數(shù),再求導函數(shù)零點,列表分析導函數(shù)符號變化規(guī)律確
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
- 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
- 6. 下載文件中如有侵權或不適當內容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 【正版授權】 ISO/IEC 24759:2025 EN Information security,cybersecurity and privacy protection - Test requirements for cryptographic modules
- 居間服務合同居間服務合同
- 三農公共服務體系搭建作業(yè)指導書
- 工作流程優(yōu)化實施情況表
- 公建房屋租賃合同
- 人合作協(xié)議書合同
- 產品認證合同協(xié)議書
- 三農領域創(chuàng)業(yè)指導與支持方案集錦
- 房地產銷售聯(lián)合代理合同
- 2025年蘭州貨運上崗證考試
- 家校共育之道
- DeepSeek入門寶典培訓課件
- 西安2025年陜西西安音樂學院專職輔導員招聘2人筆試歷年參考題庫附帶答案詳解
- 《作文中間技巧》課件
- 廣東省2025年中考物理仿真模擬卷(深圳)附答案
- 2025屆八省聯(lián)考 新高考適應性聯(lián)考英語試題(原卷版)
- 新蘇教版一年級下冊數(shù)學第1單元第3課時《8、7加幾》作業(yè)
- 2024年山東電力高等??茖W校高職單招職業(yè)技能測驗歷年參考題庫(頻考版)含答案解析
- 《平面廣告賞析》課件
- 【公開課】同一直線上二力的合成+課件+2024-2025學年+人教版(2024)初中物理八年級下冊+
- 人教鄂教版六年級下冊科學全冊知識點
評論
0/150
提交評論