4-4-變上限積分函數(shù)及其導(dǎo)數(shù)_第1頁(yè)
4-4-變上限積分函數(shù)及其導(dǎo)數(shù)_第2頁(yè)
4-4-變上限積分函數(shù)及其導(dǎo)數(shù)_第3頁(yè)
4-4-變上限積分函數(shù)及其導(dǎo)數(shù)_第4頁(yè)
4-4-變上限積分函數(shù)及其導(dǎo)數(shù)_第5頁(yè)
已閱讀5頁(yè),還剩1頁(yè)未讀, 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說(shuō)明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡(jiǎn)介

模塊基本信息一級(jí)模塊名稱積分學(xué)二級(jí)模塊名稱基礎(chǔ)模塊三級(jí)模塊名稱變上限積分函數(shù)及其導(dǎo)數(shù)模塊編號(hào)4-4先行知識(shí)1、定積分的概念模塊編號(hào)4-22、定積分的性質(zhì)模塊編號(hào)4-3知識(shí)內(nèi)容教學(xué)要求掌握程度1、變上限積分函數(shù)及原函數(shù)的概念1、理解變上限積分函數(shù)及原函數(shù)的概念一般掌握2、變上限積分函數(shù)的求導(dǎo)2、掌握變上限積分函數(shù)的求導(dǎo)能力目標(biāo)培養(yǎng)學(xué)生知識(shí)類比、遷移的能力時(shí)間分配45分鐘編撰王明校對(duì)熊文婷審核危子青修訂人張?jiān)葡级徫W忧嘁?、正文編?xiě)思路及特點(diǎn)思路:先復(fù)習(xí)定積分的概念和性質(zhì),給出變上限積分函數(shù)的定義,通過(guò)兩個(gè)定理來(lái)展示變上限積分函數(shù)的性質(zhì).特點(diǎn):引導(dǎo)學(xué)生根據(jù)已學(xué)過(guò)的相關(guān)知識(shí)理解新知識(shí)二、授課部分(一)新課講授前面我們利用定積分的概念計(jì)算了定積分的值,從中我們可以看到利用定義來(lái)求定積分是一件十分麻煩而困難的事,因此我們必須尋找一種計(jì)算定積分的新方法,即后面要學(xué)習(xí)的微積分基本定理。為了學(xué)習(xí)微積分基本定理,我們先來(lái)研究變上限積分函數(shù)及其導(dǎo)數(shù)的相關(guān)知識(shí),為微積分基本定理的證明做準(zhǔn)備.1、變上限積分函數(shù)定義:設(shè)函數(shù)f(x)在區(qū)間[a,b]上連續(xù),并且設(shè)x為[a,b]上的一點(diǎn),考察定積分,如果上限在區(qū)間上任意變動(dòng),則對(duì)于每一個(gè)取定的,定積分都有一個(gè)相應(yīng)的積分值與之對(duì)應(yīng).因此它在上定義了一個(gè)函數(shù),稱為變上限積分函數(shù),記作(x),為明確起見(jiàn),常記作(x)。說(shuō)明:當(dāng),利用定積分的幾何意義可以直觀地看到積分上限的函數(shù)所表示的意義:積分表示圖1中陰影部分的面積.y=f(x)y=f(x)(x)圖1下面討論這個(gè)函數(shù)的可導(dǎo)性定理1如果函數(shù)f(x)在區(qū)間[a,b]上連續(xù),則函數(shù)(x)在[a,b]上具有導(dǎo)數(shù),并且它的導(dǎo)數(shù)為(x)(ax<b).(選講)證明:若x(a,b),取x使xx(a,b).(xx)(x),應(yīng)用積分中值定理,有f()x,其中在x與xx之間,x0時(shí),x.于是(x).若xa,取x>0,則同理可證(x)f(a);若xb,取x<0,則同理可證(x)f(b).注:(1)變上限積分函數(shù)的導(dǎo)數(shù)其結(jié)果為被積函數(shù)本身(2)若,則稱函數(shù)(x)為f(x)在[a,b]上的一個(gè)原函數(shù).此定理說(shuō)明連續(xù)函數(shù)一定存在原函數(shù),它其中的一個(gè)原函數(shù)就是一個(gè)變上限積分函數(shù).2、例題例1求下列函數(shù)的導(dǎo)數(shù):(一級(jí))(一級(jí))(二級(jí))(4)(二級(jí))解:(1)直接利用積分上限函數(shù)的求導(dǎo)法則,.(2),則.(3)可視為與構(gòu)成的復(fù)合函數(shù),則由復(fù)合函數(shù)求導(dǎo)公式可得.說(shuō)明:利用此方法,可推出一般公式(4)則說(shuō)明:一般的,若,有例2求極限.(二級(jí))解:此極限是型的未定式,利用洛必達(dá)法則和變上限積分函數(shù)的導(dǎo)數(shù)公式得原式=例3求極限.(二級(jí))解:此極限是型的未定式,利用洛必達(dá)法則和變上限積分函數(shù)的導(dǎo)數(shù)公式有三、能力反饋部分/r

溫馨提示

  • 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。

評(píng)論

0/150

提交評(píng)論