版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領
文檔簡介
2022年高考數(shù)學模擬試卷注意事項:1.答卷前,考生務必將自己的姓名、準考證號、考場號和座位號填寫在試題卷和答題卡上。用2B鉛筆將試卷類型(B)填涂在答題卡相應位置上。將條形碼粘貼在答題卡右上角"條形碼粘貼處"。2.作答選擇題時,選出每小題答案后,用2B鉛筆把答題卡上對應題目選項的答案信息點涂黑;如需改動,用橡皮擦干凈后,再選涂其他答案。答案不能答在試題卷上。3.非選擇題必須用黑色字跡的鋼筆或簽字筆作答,答案必須寫在答題卡各題目指定區(qū)域內(nèi)相應位置上;如需改動,先劃掉原來的答案,然后再寫上新答案;不準使用鉛筆和涂改液。不按以上要求作答無效。4.考生必須保證答題卡的整潔??荚嚱Y(jié)束后,請將本試卷和答題卡一并交回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.設復數(shù)滿足,則()A. B. C. D.2.設直線的方程為,圓的方程為,若直線被圓所截得的弦長為,則實數(shù)的取值為A.或11 B.或11 C. D.3.已知等差數(shù)列的前n項和為,,則A.3 B.4 C.5 D.64.已知,則()A.5 B. C.13 D.5.某三棱錐的三視圖如圖所示,則該三棱錐的體積為A. B. C.2 D.6.設,是兩條不同的直線,,是兩個不同的平面,給出下列四個命題:①若,,則;②若,,則;③若,,則;④若,,則;其中真命題的個數(shù)為()A. B. C. D.7.給甲、乙、丙、丁四人安排泥工、木工、油漆三項工作,每項工作至少一人,每人做且僅做一項工作,甲不能安排木工工作,則不同的安排方法共有()A.12種 B.18種 C.24種 D.64種8.如圖,雙曲線的左,右焦點分別是直線與雙曲線的兩條漸近線分別相交于兩點.若則雙曲線的離心率為()A. B.C. D.9.已知,是橢圓與雙曲線的公共焦點,是它們的一個公共點,且,橢圓的離心率為,雙曲線的離心率為,若,則的最小值為()A. B. C.8 D.610.已知等差數(shù)列的前13項和為52,則()A.256 B.-256 C.32 D.-3211.中國古建筑借助榫卯將木構(gòu)件連接起來,構(gòu)件的凸出部分叫榫頭,凹進部分叫卯眼,圖中木構(gòu)件右邊的小長方體是榫頭.若如圖擺放的木構(gòu)件與某一帶卯眼的木構(gòu)件咬合成長方體,則咬合時帶卯眼的木構(gòu)件的俯視圖可以是A. B. C. D.12.已知函數(shù),,,,則,,的大小關(guān)系為()A. B. C. D.二、填空題:本題共4小題,每小題5分,共20分。13.展開式中,含項的系數(shù)為______.14.如圖,在棱長為2的正方體中,點、分別是棱,的中點,是側(cè)面正方形內(nèi)一點(含邊界),若平面,則線段長度的取值范圍是______.15.我國古代名著《張丘建算經(jīng)》中記載:“今有方錐下廣二丈,高三丈,欲斬末為方亭;令上方六尺:問亭方幾何?”大致意思是:有一個四棱錐下底邊長為二丈,高三丈;現(xiàn)從上面截取一段,使之成為正四棱臺狀方亭,且四棱臺的上底邊長為六尺,則該正四棱臺的高為________尺,體積是_______立方尺(注:1丈=10尺).16.若實數(shù)x,y滿足約束條件,則的最大值為________.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(12分)已知數(shù)列中,(實數(shù)為常數(shù)),是其前項和,且數(shù)列是等比數(shù)列,恰為與的等比中項.(1)證明:數(shù)列是等差數(shù)列;(2)求數(shù)列的通項公式;(3)若,當時,的前項和為,求證:對任意,都有.18.(12分)在三角形ABC中,角A,B,C的對邊分別為a,b,c,若,角為鈍角,(1)求的值;(2)求邊的長.19.(12分)已知函數(shù),曲線在點處的切線方程為.(Ⅰ)求,的值;(Ⅱ)若,求證:對于任意,.20.(12分)已知中,內(nèi)角所對邊分別是其中.(1)若角為銳角,且,求的值;(2)設,求的取值范圍.21.(12分)已知向量,.(1)求的最小正周期;(2)若的內(nèi)角的對邊分別為,且,求的面積.22.(10分)已知函數(shù).(1)當時,解關(guān)于x的不等式;(2)當時,若對任意實數(shù),都成立,求實數(shù)的取值范圍.
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.D【解析】
根據(jù)復數(shù)運算,即可容易求得結(jié)果.【詳解】.故選:D.【點睛】本題考查復數(shù)的四則運算,屬基礎題.2.A【解析】
圓的圓心坐標為(1,1),該圓心到直線的距離,結(jié)合弦長公式得,解得或,故選A.3.C【解析】
方法一:設等差數(shù)列的公差為,則,解得,所以.故選C.方法二:因為,所以,則.故選C.4.C【解析】
先化簡復數(shù),再求,最后求即可.【詳解】解:,,故選:C【點睛】考查復數(shù)的運算,是基礎題.5.A【解析】由給定的三視圖可知,該幾何體表示一個底面為一個直角三角形,且兩直角邊分別為和,所以底面面積為高為的三棱錐,所以三棱錐的體積為,故選A.6.C【解析】
利用線線、線面、面面相應的判定與性質(zhì)來解決.【詳解】如果兩條平行線中一條垂直于這個平面,那么另一條也垂直于這個平面知①正確;當直線平行于平面與平面的交線時也有,,故②錯誤;若,則垂直平面內(nèi)以及與平面平行的所有直線,故③正確;若,則存在直線且,因為,所以,從而,故④正確.故選:C.【點睛】本題考查空間中線線、線面、面面的位置關(guān)系,里面涉及到了相應的判定定理以及性質(zhì)定理,是一道基礎題.7.C【解析】
根據(jù)題意,分2步進行分析:①,將4人分成3組,②,甲不能安排木工工作,甲所在的一組只能安排給泥工或油漆,將剩下的2組全排列,安排其他的2項工作,由分步計數(shù)原理計算可得答案.【詳解】解:根據(jù)題意,分2步進行分析:①,將4人分成3組,有種分法;②,甲不能安排木工工作,甲所在的一組只能安排給泥工或油漆,有2種情況,將剩下的2組全排列,安排其他的2項工作,有種情況,此時有種情況,則有種不同的安排方法;故選:C.【點睛】本題考查排列、組合的應用,涉及分步計數(shù)原理的應用,屬于基礎題.8.A【解析】
易得,過B作x軸的垂線,垂足為T,在中,利用即可得到的方程.【詳解】由已知,得,過B作x軸的垂線,垂足為T,故,又所以,即,所以雙曲線的離心率.故選:A.【點睛】本題考查雙曲線的離心率問題,在作雙曲線離心率問題時,最關(guān)鍵的是找到的方程或不等式,本題屬于容易題.9.C【解析】
由橢圓的定義以及雙曲線的定義、離心率公式化簡,結(jié)合基本不等式即可求解.【詳解】設橢圓的長半軸長為,雙曲線的半實軸長為,半焦距為,則,,設由橢圓的定義以及雙曲線的定義可得:,則當且僅當時,取等號.故選:C.【點睛】本題主要考查了橢圓的定義以及雙曲線的定義、離心率公式,屬于中等題.10.A【解析】
利用等差數(shù)列的求和公式及等差數(shù)列的性質(zhì)可以求得結(jié)果.【詳解】由,,得.選A.【點睛】本題主要考查等差數(shù)列的求和公式及等差數(shù)列的性質(zhì),等差數(shù)列的等和性應用能快速求得結(jié)果.11.A【解析】
詳解:由題意知,題干中所給的是榫頭,是凸出的幾何體,求得是卯眼的俯視圖,卯眼是凹進去的,即俯視圖中應有一不可見的長方形,且俯視圖應為對稱圖形故俯視圖為故選A.點睛:本題主要考查空間幾何體的三視圖,考查學生的空間想象能力,屬于基礎題。12.B【解析】
可判斷函數(shù)在上單調(diào)遞增,且,所以.【詳解】在上單調(diào)遞增,且,所以.故選:B【點睛】本題主要考查了函數(shù)單調(diào)性的判定,指數(shù)函數(shù)與對數(shù)函數(shù)的性質(zhì),利用單調(diào)性比大小等知識,考查了學生的運算求解能力.二、填空題:本題共4小題,每小題5分,共20分。13.2【解析】
變換得到,展開式的通項為,計算得到答案.【詳解】,的展開式的通項為:.含項的系數(shù)為:.故答案為:.【點睛】本題考查了二項式定理的應用,意在考查學生的計算能力和應用能力.14.【解析】
取中點,連結(jié),,推導出平面平面,從而點在線段上運動,作于,由,能求出線段長度的取值范圍.【詳解】取中點,連結(jié),,在棱長為2的正方體中,點、分別是棱、的中點,,,,,平面平面,是側(cè)面正方形內(nèi)一點(含邊界),平面,點在線段上運動,在等腰△中,,,作于,由等面積法解得:,,線段長度的取值范圍是,.故答案為:,.【點睛】本題考查線段長的取值范圍的求法,考查空間中線線、線面、面面間的位置關(guān)系等基礎知識,考查運算求解能力,是中檔題.15.213892【解析】
根據(jù)題意畫出圖形,利用棱錐與棱臺的結(jié)構(gòu)特征求出正四棱臺的高,再計算它的體積.【詳解】如圖所示:正四棱錐P-ABCD的下底邊長為二丈,即AB=20尺,高三丈,即PO=30尺,截去一段后,得正四棱臺ABCD-A'B'C'D',且上底邊長為A'B'=6尺,所以,解得,所以該正四棱臺的體積是,故答案為:21;3892.【點睛】本題考查了棱錐與棱臺的結(jié)構(gòu)特征與應用問題,也考查了棱臺的體積計算問題,屬于中檔題.16.3【解析】
作出可行域,可得當直線經(jīng)過點時,取得最大值,求解即可.【詳解】作出可行域(如下圖陰影部分),聯(lián)立,可求得點,當直線經(jīng)過點時,.故答案為:3.【點睛】本題考查線性規(guī)劃,考查數(shù)形結(jié)合的數(shù)學思想,屬于基礎題.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(1)見解析(2)(3)見解析【解析】
(1)令可得,即.得到,再利用通項公式和前n項和的關(guān)系求解,(2)由(1)知,.設等比數(shù)列的公比為,所以,再根據(jù)恰為與的等比中項求解,(3)由(2)得到時,,,求得,再代入證明?!驹斀狻浚?)解:令可得,即.所以.時,可得,當時,所以.顯然當時,滿足上式.所以.,所以數(shù)列是等差數(shù)列,(2)由(1)知,.設等比數(shù)列的公比為,所以,恰為與的等比中項,所以,解得,所以(3)時,,,而時,,,所以當時,.當時,,∴對任意,都有,【點睛】本題主要考查數(shù)列的通項公式和前n項和的關(guān)系,等差數(shù)列,等比數(shù)列的定義和性質(zhì)以及數(shù)列放縮的方法,還考查了轉(zhuǎn)化化歸的思想和運算求解的能力,屬于難題,18.(1)(2)【解析】
(1)由,分別求得,得到答案;(2)利用正弦定理得到,利用余弦定理解出.【詳解】(1)因為角為鈍角,,所以,又,所以,且,所以.(2)因為,且,所以,又,則,所以.19.(Ⅰ),(Ⅱ)見解析【解析】
(1)根據(jù)導數(shù)的運算法則,求出函數(shù)的導數(shù),利用切線方程求出切線的斜率及切點,利用函數(shù)在切點處的導數(shù)值為曲線切線的斜率及切點也在曲線上,列出方程組,求出,值;(2)首先將不等式轉(zhuǎn)化為函數(shù),即將不等式右邊式子左移,得,構(gòu)造函數(shù)并判斷其符號,這里應注意的取值范圍,從而證明不等式.【詳解】解:(1)由于直線的斜率為,且過點,故即解得,.(2)由(1)知,所以.考慮函數(shù),,則.而,故當時,,所以,即.【點睛】本題考查了利用導數(shù)求切線的斜率,利用函數(shù)的導數(shù)研究函數(shù)的單調(diào)性、和最值問題,以及不等式證明問題,考查了分析及解決問題的能力,其中,不等式問題中結(jié)合構(gòu)造函數(shù)實現(xiàn)正確轉(zhuǎn)換為最大值和最小值問題是關(guān)鍵.20.(1);(2).【解析】
(1)由正弦定理直接可求,然后運用兩角和的正弦公式算出;(2)化簡,由余弦定理得,利用基本不等式求出,確定角范圍,進而求出的取值范圍.【詳解】(1)由正弦定理,得:,且為銳角(2)【點睛】本題主要考查了正余弦定理的應用,基本不等式的應用,三角函數(shù)的值域等,考查了學生運算求解能力.21.(1);(2)或【解析】
(1)利用平面向量數(shù)量積的坐標運算可得,利用正弦函數(shù)的周期性即可求解;(2)由(1)可求,結(jié)合范圍,可求的值,由余弦定理可求的值,進而根據(jù)三角形的面積公式即可求解.【詳解】(1)∴最小正周期.(2)由(1)知,∴∴,又∴或.解得或當時,由余弦定理得即,解得.此時.當時,由余弦定理得.即,解得.此時.【點睛】本題主要考查了平面向量數(shù)量積的坐標運算、正弦函數(shù)的周期性,考查余弦定理、三角形的面積公式在解三角形中的綜
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
- 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 蘇教版數(shù)學一年級下冊教案
- 2024年游艇碼頭物業(yè)委托管理及船舶維護服務協(xié)議3篇
- 2024年甲乙雙方關(guān)于物聯(lián)網(wǎng)技術(shù)研發(fā)與推廣的合同
- 商場工作計劃模板七篇
- 減溫減壓閥行業(yè)行業(yè)發(fā)展趨勢及投資戰(zhàn)略研究分析報告
- 簡短的個人述職報告
- 2022新學期開學感悟(10篇)
- 以家為話題作文15篇
- 幼兒園大班體育教案教學
- 土木工程認知實習報告4篇
- 2024年地理知識競賽試題200題及答案
- 化學反應工程智慧樹知到期末考試答案章節(jié)答案2024年浙江工業(yè)大學
- 植物細胞信號轉(zhuǎn)導課件
- 第二章-地方理論-《旅游目的地管理》課件
- 河北省唐山市藥品零售藥店企業(yè)藥房名單目錄
- 水上運輸大型構(gòu)件安全交底
- 《保障農(nóng)民工工資支付條例》口袋書課件
- 2020 新ACLS-PCSA課前自我測試-翻譯版玉二醫(yī)【復制】附有答案
- 危險化學品安全周知卡氧氣
- DB13∕T 5517-2022 大田作物病蟲草害防控關(guān)鍵期植保無人飛機作業(yè)技術(shù)規(guī)程
- 《編譯原理》考試試習題及答案(匯總)
評論
0/150
提交評論