最新高中三角函數(shù)-反三角函數(shù)公式大全_第1頁
最新高中三角函數(shù)-反三角函數(shù)公式大全_第2頁
最新高中三角函數(shù)-反三角函數(shù)公式大全_第3頁
全文預(yù)覽已結(jié)束

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡介

三角函數(shù)公式兩角和公式sin(A+B)=sinAcosB+cosAsinBsin(A-B)=sinAcosB-cosAsinBcos(A+B)=cosAcosB-sinAsinBcos(A-B)=cosAcosB+sinAsinBtan(A+B)=tan(A-B)=cot(A+B)=cot(A-B)=倍角公式tan2A=Sin2A=2SinA?CosACos2A=Cos2A-Sin2A=2Cos2半角公式和差化積sina+sinb=2sincossina-sinb=2cossincosa+cosb=2coscoscosa-cosb=-2sinsin積化和差誘導(dǎo)公式sin(-a)=-sinacos(-a)=cosasin(-a)=cosacos(-a)=sinasin(+a)=cosacos(+a)=-sinasin(π-a)=sinacos(π-a)=-cosasin(π+a)=-sinacos(π+a)=-cosatgA=tanA=萬能公式sina=cosa=tana=其他非重點(diǎn)三角函數(shù)csc(a)=sec(a)=cot(a)=公式一:設(shè)α為任意角,終邊相同的角的同一三角函數(shù)的值相等:sin〔2kπ+α〕=sinαcos〔2kπ+α〕=cosαtan〔2kπ+α〕=tanαcot〔2kπ+α〕=cotα公式二:設(shè)α為任意角,π+α的三角函數(shù)值與α的三角函數(shù)值之間的關(guān)系:sin〔π+α〕=-sinαcos〔π+α〕=-cosαtan〔π+α〕=tanαcot〔π+α〕=cotα公式三:任意角α與-α的三角函數(shù)值之間的關(guān)系:sin〔-α〕=-sinαcos〔-α〕=cosαtan〔-α〕=-tanαcot〔-α〕=-cotα公式四:利用公式二和公式三可以得到π-α與α的三角函數(shù)值之間的關(guān)系:sin〔π-α〕=sinαcos〔π-α〕=-cosαtan〔π-α〕=-tanαcot〔π-α〕=-cotα公式五:利用公式-和公式三可以得到2π-α與α的三角函數(shù)值之間的關(guān)系:sin〔2π-α〕=-sinαcos〔2π-α〕=cosαtan〔2π-α〕=-tanαcot〔2π-α〕=-cotα公式六:±α及±α與α的三角函數(shù)值之間的關(guān)系:sin〔+α〕=cosαcos〔+α〕=-sinαtan〔+α〕=-cotαcot〔+α〕=-tanαsin〔-α〕=cosαcos〔-α〕=sinαtan〔-α〕=cotαcot〔-α〕=tanαsin〔+α〕=-cosαcos〔+α〕=sinαtan〔+α〕=-cotαcot〔+α〕=-tanαsin〔-α〕=-cosαcos〔-α〕=-sinαtan〔-α〕=cotαcot〔-α〕=tanα(以上k∈Z)正切函數(shù);余切函數(shù);正割函數(shù);余割函數(shù)三角函數(shù)奇偶、周期性,,奇函數(shù);偶函數(shù);,周期;周期;,周期常用三角函數(shù)公式:反三角函數(shù)::定義域,值域;:定義域,值域;:定

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。

評(píng)論

0/150

提交評(píng)論