版權(quán)說(shuō)明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡(jiǎn)介
2022年高考數(shù)學(xué)模擬試卷請(qǐng)考生注意:1.請(qǐng)用2B鉛筆將選擇題答案涂填在答題紙相應(yīng)位置上,請(qǐng)用0.5毫米及以上黑色字跡的鋼筆或簽字筆將主觀題的答案寫在答題紙相應(yīng)的答題區(qū)內(nèi)。寫在試題卷、草稿紙上均無(wú)效。2.答題前,認(rèn)真閱讀答題紙上的《注意事項(xiàng)》,按規(guī)定答題。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1.“完全數(shù)”是一些特殊的自然數(shù),它所有的真因子(即除了自身以外的約數(shù))的和恰好等于它本身.古希臘數(shù)學(xué)家畢達(dá)哥拉斯公元前六世紀(jì)發(fā)現(xiàn)了第一、二個(gè)“完全數(shù)”6和28,進(jìn)一步研究發(fā)現(xiàn)后續(xù)三個(gè)完全數(shù)”分別為496,8128,33550336,現(xiàn)將這五個(gè)“完全數(shù)”隨機(jī)分為兩組,一組2個(gè),另一組3個(gè),則6和28不在同一組的概率為()A. B. C. D.2.袋中裝有標(biāo)號(hào)為1,2,3,4,5,6且大小相同的6個(gè)小球,從袋子中一次性摸出兩個(gè)球,記下號(hào)碼并放回,如果兩個(gè)號(hào)碼的和是3的倍數(shù),則獲獎(jiǎng),若有5人參與摸球,則恰好2人獲獎(jiǎng)的概率是()A. B. C. D.3.一個(gè)正方體被一個(gè)平面截去一部分后,剩余部分的三視圖如下圖,則截去部分體積與剩余部分體積的比值為()A. B. C. D.4.在中,點(diǎn)D是線段BC上任意一點(diǎn),,,則()A. B.-2 C. D.25.若實(shí)數(shù)滿足不等式組則的最小值等于()A. B. C. D.6.已知為等腰直角三角形,,,為所在平面內(nèi)一點(diǎn),且,則()A. B. C. D.7.函數(shù)的部分圖象如圖所示,已知,函數(shù)的圖象可由圖象向右平移個(gè)單位長(zhǎng)度而得到,則函數(shù)的解析式為()A. B.C. D.8.一袋中裝有個(gè)紅球和個(gè)黑球(除顏色外無(wú)區(qū)別),任取球,記其中黑球數(shù)為,則為()A. B. C. D.9.已知集合M={y|y=2x,x>0},N={x|y=lg(2x-xA.(1,+∞) B.(1,2) C.[2,+∞) D.[1,+∞)10.若x,y滿足約束條件且的最大值為,則a的取值范圍是()A. B. C. D.11.從5名學(xué)生中選出4名分別參加數(shù)學(xué),物理,化學(xué),生物四科競(jìng)賽,其中甲不能參加生物競(jìng)賽,則不同的參賽方案種數(shù)為A.48 B.72 C.90 D.9612.已知平面向量滿足與的夾角為,且,則實(shí)數(shù)的值為()A. B. C. D.二、填空題:本題共4小題,每小題5分,共20分。13.若一個(gè)正四面體的棱長(zhǎng)為1,四個(gè)頂點(diǎn)在同一個(gè)球面上,則此球的表面積為_________.14.已知拋物線的焦點(diǎn)為,過(guò)點(diǎn)且斜率為1的直線交拋物線于兩點(diǎn),,若線段的垂直平分線與軸交點(diǎn)的橫坐標(biāo)為,則的值為_________.15.已知三棱錐,,是邊長(zhǎng)為4的正三角形,,分別是、的中點(diǎn),為棱上一動(dòng)點(diǎn)(點(diǎn)除外),,若異面直線與所成的角為,且,則______.16.已知集合,則____________.三、解答題:共70分。解答應(yīng)寫出文字說(shuō)明、證明過(guò)程或演算步驟。17.(12分)如圖,在中,,,點(diǎn)在線段上.(1)若,求的長(zhǎng);(2)若,,求的面積.18.(12分)如圖,四棱錐,側(cè)面是邊長(zhǎng)為2的正三角形,且與底面垂直,底面是的菱形,為棱上的動(dòng)點(diǎn),且.(I)求證:為直角三角形;(II)試確定的值,使得二面角的平面角余弦值為.19.(12分)分別為的內(nèi)角的對(duì)邊.已知.(1)若,求;(2)已知,當(dāng)?shù)拿娣e取得最大值時(shí),求的周長(zhǎng).20.(12分)已知是等腰直角三角形,.分別為的中點(diǎn),沿將折起,得到如圖所示的四棱錐.(Ⅰ)求證:平面平面.(Ⅱ)當(dāng)三棱錐的體積取最大值時(shí),求平面與平面所成角的正弦值.21.(12分)已知.(1)若曲線在點(diǎn)處的切線也與曲線相切,求實(shí)數(shù)的值;(2)試討論函數(shù)零點(diǎn)的個(gè)數(shù).22.(10分)已知函數(shù)(其中是自然對(duì)數(shù)的底數(shù))(1)若在R上單調(diào)遞增,求正數(shù)a的取值范圍;(2)若f(x)在處導(dǎo)數(shù)相等,證明:;(3)當(dāng)時(shí),證明:對(duì)于任意,若,則直線與曲線有唯一公共點(diǎn)(注:當(dāng)時(shí),直線與曲線的交點(diǎn)在y軸兩側(cè)).
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1.C【解析】
先求出五個(gè)“完全數(shù)”隨機(jī)分為兩組,一組2個(gè),另一組3個(gè)的基本事件總數(shù)為,再求出6和28恰好在同一組包含的基本事件個(gè)數(shù),根據(jù)即可求出6和28不在同一組的概率.【詳解】解:根據(jù)題意,將五個(gè)“完全數(shù)”隨機(jī)分為兩組,一組2個(gè),另一組3個(gè),則基本事件總數(shù)為,則6和28恰好在同一組包含的基本事件個(gè)數(shù),∴6和28不在同一組的概率.故選:C.【點(diǎn)睛】本題考查古典概型的概率的求法,涉及實(shí)際問(wèn)題中組合數(shù)的應(yīng)用.2.C【解析】
先確定摸一次中獎(jiǎng)的概率,5個(gè)人摸獎(jiǎng),相當(dāng)于發(fā)生5次試驗(yàn),根據(jù)每一次發(fā)生的概率,利用獨(dú)立重復(fù)試驗(yàn)的公式得到結(jié)果.【詳解】從6個(gè)球中摸出2個(gè),共有種結(jié)果,兩個(gè)球的號(hào)碼之和是3的倍數(shù),共有摸一次中獎(jiǎng)的概率是,5個(gè)人摸獎(jiǎng),相當(dāng)于發(fā)生5次試驗(yàn),且每一次發(fā)生的概率是,有5人參與摸獎(jiǎng),恰好有2人獲獎(jiǎng)的概率是,故選:.【點(diǎn)睛】本題主要考查了次獨(dú)立重復(fù)試驗(yàn)中恰好發(fā)生次的概率,考查獨(dú)立重復(fù)試驗(yàn)的概率,解題時(shí)主要是看清摸獎(jiǎng)5次,相當(dāng)于做了5次獨(dú)立重復(fù)試驗(yàn),利用公式做出結(jié)果,屬于中檔題.3.D【解析】
試題分析:如圖所示,截去部分是正方體的一個(gè)角,其體積是正方體體積的,剩余部分體積是正方體體積的,所以截去部分體積與剩余部分體積的比值為,故選D.考點(diǎn):本題主要考查三視圖及幾何體體積的計(jì)算.4.A【解析】
設(shè),用表示出,求出的值即可得出答案.【詳解】設(shè)由,,.故選:A【點(diǎn)睛】本題考查了向量加法、減法以及數(shù)乘運(yùn)算,需掌握向量加法的三角形法則以及向量減法的幾何意義,屬于基礎(chǔ)題.5.A【解析】
首先畫出可行域,利用目標(biāo)函數(shù)的幾何意義求的最小值.【詳解】解:作出實(shí)數(shù),滿足不等式組表示的平面區(qū)域(如圖示:陰影部分)由得,由得,平移,易知過(guò)點(diǎn)時(shí)直線在上截距最小,所以.故選:A.【點(diǎn)睛】本題考查了簡(jiǎn)單線性規(guī)劃問(wèn)題,求目標(biāo)函數(shù)的最值先畫出可行域,利用幾何意義求值,屬于中檔題.6.D【解析】
以AB,AC分別為x軸和y軸建立坐標(biāo)系,結(jié)合向量的坐標(biāo)運(yùn)算,可求得點(diǎn)的坐標(biāo),進(jìn)而求得,由平面向量的數(shù)量積可得答案.【詳解】如圖建系,則,,,由,易得,則.故選:D【點(diǎn)睛】本題考查平面向量基本定理的運(yùn)用、數(shù)量積的運(yùn)算,考查函數(shù)與方程思想、轉(zhuǎn)化與化歸思想,考查邏輯推理能力、運(yùn)算求解能力.7.A【解析】
由圖根據(jù)三角函數(shù)圖像的對(duì)稱性可得,利用周期公式可得,再根據(jù)圖像過(guò),即可求出,再利用三角函數(shù)的平移變換即可求解.【詳解】由圖像可知,即,所以,解得,又,所以,由,所以或,又,所以,,所以,,即,因?yàn)楹瘮?shù)的圖象由圖象向右平移個(gè)單位長(zhǎng)度而得到,所以.故選:A【點(diǎn)睛】本題考查了由圖像求三角函數(shù)的解析式、三角函數(shù)圖像的平移伸縮變換,需掌握三角形函數(shù)的平移伸縮變換原則,屬于基礎(chǔ)題.8.A【解析】
由題意可知,隨機(jī)變量的可能取值有、、、,計(jì)算出隨機(jī)變量在不同取值下的概率,進(jìn)而可求得隨機(jī)變量的數(shù)學(xué)期望值.【詳解】由題意可知,隨機(jī)變量的可能取值有、、、,則,,,.因此,隨機(jī)變量的數(shù)學(xué)期望為.故選:A.【點(diǎn)睛】本題考查隨機(jī)變量數(shù)學(xué)期望的計(jì)算,考查計(jì)算能力,屬于基礎(chǔ)題.9.B【解析】M=y|y=N==x|∴M∩N=(1,2).故選B.10.A【解析】
畫出約束條件的可行域,利用目標(biāo)函數(shù)的最值,判斷a的范圍即可.【詳解】作出約束條件表示的可行域,如圖所示.因?yàn)榈淖畲笾禐?,所以在點(diǎn)處取得最大值,則,即.故選:A【點(diǎn)睛】本題主要考查線性規(guī)劃的應(yīng)用,利用z的幾何意義,通過(guò)數(shù)形結(jié)合是解決本題的關(guān)鍵.11.D【解析】因甲不參加生物競(jìng)賽,則安排甲參加另外3場(chǎng)比賽或甲學(xué)生不參加任何比賽①當(dāng)甲參加另外3場(chǎng)比賽時(shí),共有?=72種選擇方案;②當(dāng)甲學(xué)生不參加任何比賽時(shí),共有=24種選擇方案.綜上所述,所有參賽方案有72+24=96種故答案為:96點(diǎn)睛:本題以選擇學(xué)生參加比賽為載體,考查了分類計(jì)數(shù)原理、排列數(shù)與組合數(shù)公式等知識(shí),屬于基礎(chǔ)題.12.D【解析】
由已知可得,結(jié)合向量數(shù)量積的運(yùn)算律,建立方程,求解即可.【詳解】依題意得由,得即,解得.故選:.【點(diǎn)睛】本題考查向量的數(shù)量積運(yùn)算,向量垂直的應(yīng)用,考查計(jì)算求解能力,屬于基礎(chǔ)題.二、填空題:本題共4小題,每小題5分,共20分。13.【解析】
將四面體補(bǔ)成一個(gè)正方體,通過(guò)正方體的對(duì)角線與球的半徑的關(guān)系,得到球的半徑,利用球的表面積公式,即可求解.【詳解】如圖所示,將正四面體補(bǔ)形成一個(gè)正方體,則正四面體的外接球與正方體的外接球表示同一個(gè)球,因?yàn)檎拿骟w的棱長(zhǎng)為1,所以正方體的棱長(zhǎng)為,設(shè)球的半徑為,因?yàn)榍虻闹睆绞钦襟w的對(duì)角線,即,解得,所以球的表面積為.【點(diǎn)睛】本題主要考查了有關(guān)求得組合體的結(jié)構(gòu)特征,以及球的表面積的計(jì)算,其中巧妙構(gòu)造正方體,利用正方體的外接球的直徑等于正方體的對(duì)角線長(zhǎng),得到球的半徑是解答的關(guān)鍵,著重考查了空間想象能力,以及運(yùn)算與求解能力,屬于基礎(chǔ)題.14.1【解析】
設(shè),寫出直線方程代入拋物線方程后應(yīng)用韋達(dá)定理求得,由拋物線定義得焦點(diǎn)弦長(zhǎng),求得,再寫出的垂直平分線方程,得,從而可得結(jié)論.【詳解】拋物線的焦點(diǎn)坐標(biāo)為,直線的方程為,據(jù)得.設(shè),則.線段垂直平分線方程為,令,則,所以,所以.故答案為:1.【點(diǎn)睛】本題考查拋物線的焦點(diǎn)弦問(wèn)題,根據(jù)拋物線的定義表示出焦點(diǎn)弦長(zhǎng)是解題關(guān)鍵.15.【解析】
取的中點(diǎn),連接,,取的中點(diǎn),連接,,,直線與所成的角為,計(jì)算,,根據(jù)余弦定理計(jì)算得到答案。【詳解】取的中點(diǎn),連接,,依題意可得,,所以平面,所以,因?yàn)?,分別、的中點(diǎn),所以,因?yàn)?,所以,所以平面,故,故,故兩兩垂直。取的中點(diǎn),連接,,,因?yàn)?,所以直線與所成的角為,設(shè),則,,所以,化簡(jiǎn)得,解得,即.故答案為:.【點(diǎn)睛】本題考查了根據(jù)異面直線夾角求長(zhǎng)度,意在考查學(xué)生的計(jì)算能力和空間想象能力.16.【解析】
根據(jù)并集的定義計(jì)算即可.【詳解】由集合的并集,知.故答案為:【點(diǎn)睛】本題考查集合的并集運(yùn)算,屬于容易題.三、解答題:共70分。解答應(yīng)寫出文字說(shuō)明、證明過(guò)程或演算步驟。17.(1)(2)【解析】
(1)先根據(jù)平方關(guān)系求出,再根據(jù)正弦定理即可求出;(2)分別在和中,根據(jù)正弦定理列出兩個(gè)等式,兩式相除,利用題目條件即可求出,再根據(jù)余弦定理求出,即可根據(jù)求出的面積.【詳解】(1)由,得,所以.由正弦定理得,,即,得.(2)由正弦定理,在中,,①在中,,②又,,,由得,由余弦定理得,即,解得,所以的面積.【點(diǎn)睛】本題主要考查正余弦定理在解三角形中的應(yīng)用,以及三角形面積公式的應(yīng)用,意在考查學(xué)生的數(shù)學(xué)運(yùn)算能力,屬于基礎(chǔ)題.18.(1)見解析;(II).【解析】
試題分析:(1)取中點(diǎn),連結(jié),以為原點(diǎn),為軸,為軸,為軸,建立空間直角坐標(biāo)系,利用向量法能證明為直角三角形;(2)設(shè),由,得,求出平面的法向量和平面的法向量,,根據(jù)空間向量夾角余弦公式能求出結(jié)果.試題解析:(I)取中點(diǎn),連結(jié),依題意可知均為正三角形,所以,又平面平面,所以平面,又平面,所以,因?yàn)?所以,即,從而為直角三角形.(II)法一:由(I)可知,又平面平面,平面平面,平面,所以平面.以為原點(diǎn),建立空間直角坐標(biāo)系如圖所示,則,由可得點(diǎn)的坐標(biāo)所以,設(shè)平面的法向量為,則,即解得,令,得,顯然平面的一個(gè)法向量為,依題意,解得或(舍去),所以,當(dāng)時(shí),二面角的余弦值為.法二:由(I)可知平面,所以,所以為二面角的平面角,即,在中,,所以,由正弦定理可得,即解得,又,所以,所以,當(dāng)時(shí),二面角的余弦值為.19.(1)(2)【解析】
(1)根據(jù)正弦定理,將,化角為邊,即可求出,再利用正弦定理即可求出;(2)根據(jù),選擇,所以當(dāng)?shù)拿娣e取得最大值時(shí),最大,結(jié)合(1)中條件,即可求出最大時(shí),對(duì)應(yīng)的的值,再根據(jù)余弦定理求出邊,進(jìn)而得到的周長(zhǎng).【詳解】(1)由,得,即.因?yàn)?,所?由,得.(2)因?yàn)?,所以,?dāng)且僅當(dāng)時(shí),等號(hào)成立.因?yàn)榈拿娣e.所以當(dāng)時(shí),的面積取得最大值,此時(shí),則,所以的周長(zhǎng)為.【點(diǎn)睛】本題主要考查利用正弦定理和余弦定理解三角形,涉及到基本不等式的應(yīng)用,意在考查學(xué)生的轉(zhuǎn)化能力和數(shù)學(xué)運(yùn)算能力.20.(Ⅰ)見解析.(Ⅱ).【解析】
(I)證明平面得出平面,根據(jù)面面垂直的判定定理得到結(jié)論;(II)當(dāng)平面時(shí),棱錐體積最大,建立空間坐標(biāo)系,計(jì)算兩平面的法向量,計(jì)算法向量的夾角得出答案.【詳解】(I)證明:分別為的中點(diǎn),,又平面平面,又平面平面平面(II),為定值當(dāng)平面時(shí),三棱錐的體積取最大值以為原點(diǎn),以為坐標(biāo)軸建立空間直角坐標(biāo)系則,設(shè)平面的法向量為,則即,令可得平面是平面的一個(gè)法向量平面與平面所成角的正弦值為【點(diǎn)睛】本題考查了面面垂直的判定,二面角的計(jì)算,關(guān)鍵是能夠根據(jù)體積的最值確定垂直關(guān)系,從而可以建立起空間直角坐標(biāo)系,利用空間向量法求得二面角,屬于中檔題.21.(1)(2)答案不唯一具體見解析【解析】
(1)利用導(dǎo)數(shù)的幾何意義,設(shè)切點(diǎn)的坐標(biāo),用不同的方式求出兩種切線方程,但兩條切線本質(zhì)為同一條,從而得到方程組,再構(gòu)造函數(shù)研究其最大值,進(jìn)而求得;(2)對(duì)函數(shù)進(jìn)行求導(dǎo)后得,對(duì)分三種情況進(jìn)行一級(jí)討論,即,,,結(jié)合函數(shù)圖象的單調(diào)性及零點(diǎn)存在定理,可得函數(shù)零點(diǎn)情況.【詳解】解:(1)曲線在點(diǎn)處的切線方程為,即.令切線與曲線相切于點(diǎn),則切線方程為,∴,∴,令,則,記,于是,在上單調(diào)遞增,在上單調(diào)遞減,∴,于是,.(2),①當(dāng)時(shí),恒成立,在上單調(diào)遞增,且,∴函數(shù)
溫馨提示
- 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 2024年適用:高科技研發(fā)項(xiàng)目合作合同
- 2024蘋果種植基地灌溉系統(tǒng)改造合同3篇
- 2024網(wǎng)絡(luò)游戲開發(fā)與發(fā)行委托合同
- 2024年04月貴州貴州省農(nóng)村信用社高校畢業(yè)生專場(chǎng)網(wǎng)絡(luò)招考活動(dòng)筆試歷年參考題庫(kù)附帶答案詳解
- 2025年度柴油發(fā)電機(jī)租賃及電力市場(chǎng)交易合同4篇
- 2024石材干掛工程安全生產(chǎn)與環(huán)境保護(hù)合同3篇
- 二零二五版窗簾安裝與室內(nèi)環(huán)境檢測(cè)服務(wù)合同3篇
- 2025年度知識(shí)產(chǎn)權(quán)跨境交易及法律服務(wù)合同4篇
- 個(gè)人房產(chǎn)買賣合同2024年版5篇
- 2025年度健康醫(yī)療大數(shù)據(jù)研發(fā)與應(yīng)用合同范本4篇
- 寒潮雨雪應(yīng)急預(yù)案范文(2篇)
- DB33T 2570-2023 營(yíng)商環(huán)境無(wú)感監(jiān)測(cè)規(guī)范 指標(biāo)體系
- 上海市2024年中考英語(yǔ)試題及答案
- 房屋市政工程生產(chǎn)安全重大事故隱患判定標(biāo)準(zhǔn)(2024版)宣傳海報(bào)
- 垃圾車駕駛員聘用合同
- 2025年道路運(yùn)輸企業(yè)客運(yùn)駕駛員安全教育培訓(xùn)計(jì)劃
- 南京工業(yè)大學(xué)浦江學(xué)院《線性代數(shù)(理工)》2022-2023學(xué)年第一學(xué)期期末試卷
- 2024版機(jī)床維護(hù)保養(yǎng)服務(wù)合同3篇
- 《論拒不執(zhí)行判決、裁定罪“執(zhí)行能力”之認(rèn)定》
- 工程融資分紅合同范例
- 2024國(guó)家安全員資格考試題庫(kù)加解析答案
評(píng)論
0/150
提交評(píng)論