




版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領
文檔簡介
2022-2023學年高一上數(shù)學期末模擬試卷考生請注意:1.答題前請將考場、試室號、座位號、考生號、姓名寫在試卷密封線內,不得在試卷上作任何標記。2.第一部分選擇題每小題選出答案后,需將答案寫在試卷指定的括號內,第二部分非選擇題答案寫在試卷題目指定的位置上。3.考生必須保證答題卡的整潔。考試結束后,請將本試卷和答題卡一并交回。一、選擇題(本大題共12小題,每小題5分,共60分,在每小題給出的四個選項中,只有一項是符合題目要求的,請將正確答案涂在答題卡上.)1.已知是冪函數(shù),且在第一象限內是單調遞減,則的值為()A.-3 B.2C.-3或2 D.32.已知實數(shù)滿足方程,則的最小值和最大值分別為()A.-9,1 B.-10,1C.-9,2 D.-10,23.我國著名數(shù)學家華羅庚先生曾說:“數(shù)缺形時少直觀,形缺數(shù)時難入微,數(shù)形結合百般好,隔離分家萬事休.”在數(shù)學學習和研究中,我們要學會以形助數(shù).則在同一直角坐標系中,與的圖像可能是()A. B.C. D.4.根據(jù)有關資料,圍棋狀態(tài)空間復雜度的上限M約為3361,而可觀測宇宙中普通物質的原子總數(shù)N約為1080.則下列各數(shù)中與最接近的是(參考數(shù)據(jù):lg3≈048)A.1033 B.1053C.1073 D.10935.已知函數(shù),下面關于說法正確的個數(shù)是()①的圖象關于原點對稱②的圖象關于y軸對稱③的值域為④在定義域上單調遞減A.1 B.2C.3 D.46.已知向量滿足,,則A.4 B.3C.2 D.07.已知,,,則,,三者的大小關系是()A. B.C. D.8.函數(shù)在的圖象大致為A. B.C. D.9.復利是一種計算利息的方法.即把前一期的利息和本金加在一起算作本金,再計算下一期的利息.某同學有壓歲錢1000元,存入銀行,年利率為2.25%;若放入微信零錢通或者支付寶的余額寶,年利率可達4.01%.如果將這1000元選擇合適方式存滿5年,可以多獲利息()元.(參考數(shù)據(jù):)A.176 B.100C.77 D.8810.已知函數(shù),且函數(shù)恰有三個不同的零點,則實數(shù)的取值范圍是A. B.C. D.11.設函數(shù),對于滿足的一切值都有,則實數(shù)的取值范圍為A B.C. D.12.設,且,則()A. B.10C.20 D.100二、選擇題(本大題共4小題,每小題5分,共20分,將答案寫在答題卡上.)13.設,且,則的取值范圍是________.14.設函數(shù)在區(qū)間上的最大值和最小值分別為M、m,則___________.15.已知角A為△ABC的內角,cosA=-4516.如圖,在空間四邊形中,平面平面,,,且,則與平面所成角的度數(shù)為________三、解答題(本大題共6個小題,共70分。解答時要求寫出必要的文字說明、證明過程或演算步驟。)17.已知函數(shù),(其中,,)的圖象與軸的交點中,相鄰兩個交點之間的距離為,且圖象上一個最高點為.(1)求函數(shù)的解析式;(2)先把函數(shù)的圖象向左平移個單位長度,然后再把所得圖象上各點的橫坐標伸長到原來的2倍(縱坐標不變),得到函數(shù)的圖象,若總存在,使得不等式成立,求實數(shù)的最小值.18.果園A占地約3000畝,擬選用果樹B進行種植,在相同種植條件下,果樹B每畝最多可種植40棵,種植成本(萬元)與果樹數(shù)量(百棵)之間的關系如下表所示.149161(1)根據(jù)以上表格中的數(shù)據(jù)判斷:與哪一個更適合作為與的函數(shù)模型;(2)已知該果園的年利潤(萬元)與的關系為,則果樹數(shù)量為多少時年利潤最大?19.若存在實數(shù)、使得,則稱函數(shù)為、的“函數(shù)”(1)若.為、的“函數(shù)”,其中為奇函數(shù),為偶函數(shù),求、的解析式;(2)設函數(shù),,是否存在實數(shù)、使得為、的“函數(shù)”,且同時滿足:①是偶函數(shù);②的值域為.若存在,請求出、的值;若不存在,請說明理由.(注:為自然數(shù).)20.已知直線(1)求直線的斜率;(2)若直線m與平行,且過點,求m的方程.21.已知函數(shù)(,)(1)若關于的不等式的解集為,求不等式的解集;(2)若,,求關于的不等式的解集22.已知函數(shù)的部分圖象如圖所示.(1)求函數(shù)的解析式:(2)將函數(shù)的圖象上各點的橫坐標伸長為原來的2倍(縱坐標不變),再將得到的圖象向右平移個單位長度,得到函數(shù)的圖象,求在上的值域
參考答案一、選擇題(本大題共12小題,每小題5分,共60分,在每小題給出的四個選項中,只有一項是符合題目要求的,請將正確答案涂在答題卡上.)1、A【解析】根據(jù)冪函數(shù)的定義判斷即可【詳解】由是冪函數(shù),知,解得或.∵該函數(shù)在第一象限內是單調遞減的,∴.故.故選:A.【點睛】本題考查了冪函數(shù)的定義以及函數(shù)的單調性問題,屬于基礎題2、A【解析】即為y-2x可看作是直線y=2x+b在y軸上的截距,當直線y=2x+b與圓相切時,縱截距b取得最大值或最小值,此時,解得b=-9或1.所以y-2x的最大值為1,最小值為-9故選A.3、B【解析】結合指數(shù)函數(shù)和對數(shù)函數(shù)的圖像即可.【詳解】是定義域為R的增函數(shù),:-x>0,則x<0.結合選項只有B符合故選:B4、D【解析】設,兩邊取對數(shù),,所以,即最接近,故選D.【名師點睛】本題考查了轉化與化歸能力,本題以實際問題的形式給出,但本質就是對數(shù)的運算關系,以及指數(shù)與對數(shù)運算的關系,難點是令,并想到兩邊同時取對數(shù)進行求解,對數(shù)運算公式包含,,.5、B【解析】根據(jù)函數(shù)的奇偶性定義判斷為奇函數(shù)可得對稱性,化簡解析式,根據(jù)指數(shù)函數(shù)的性質可得單調性和值域.【詳解】因為的定義域為,,即函數(shù)為奇函數(shù),所以函數(shù)的圖象關于原點對稱,即①正確,②不正確;因為,由于單調遞減,所以單調遞增,故④錯誤;因為,所以,,即函數(shù)的值域為,故③正確,即正確的個數(shù)為2個,故選:B.【點睛】關鍵點點睛:理解函數(shù)的奇偶性和常見函數(shù)單調性簡單的判斷方式.6、B【解析】分析:根據(jù)向量模的性質以及向量乘法得結果.詳解:因所以選B.點睛:向量加減乘:7、C【解析】分別求出,,的范圍,即可比較大小.【詳解】因為在上單調遞增,所以,即,因為在上單調遞減,所以,即,因為在單調遞增,所以,即,所以,故選:C8、C【解析】當時,,去掉D;當時,,去掉B;因為,所以去A,選C.點睛:(1)運用函數(shù)圖象解決問題時,先要正確理解和把握函數(shù)圖象本身的含義及其表示的內容,熟悉圖象所能夠表達的函數(shù)的性質.(2)在研究函數(shù)性質特別是單調性、最值、零點時,要注意用好其與圖象的關系,結合圖象研究.9、B【解析】由題意,某同學有壓歲錢1000元,分別計算存入銀行和放入微信零錢通或者支付寶的余額寶所得利息,即可得到答案【詳解】由題意,某同學有壓歲錢1000元,存入銀行,年利率為2.25%,若在銀行存放5年,可得金額為元,即利息為元,若放入微信零錢通或者支付寶的余額寶時,利率可達4.01%,若存放5年,可得金額為元,即利息為元,所以將這1000元選擇合適方式存滿5年,可以多獲利息元,故選B【點睛】本題主要考查了等比數(shù)列的實際應用問題,其中解答中認真審題,準確理解題意,合理利用等比數(shù)列的通項公式求解是解答的關鍵,著重考查了分析問題和解答問題的能力,屬于基礎題10、A【解析】函數(shù)恰有三個不同的零點等價于與有三個交點,再分別畫出和的圖像,通過觀察圖像得出a的范圍.【詳解】解:方程所以函數(shù)恰有三個不同的零點等價于與有三個交點記,畫出函數(shù)簡圖如下畫出函數(shù)如圖中過原點虛線l,平移l要保證圖像有三個交點,向上最多平移到l’位置,向下平移一直會有三個交點,所以,即故選A.【點睛】本題考查了函數(shù)的零點問題,解決函數(shù)零點問題常轉化為兩函數(shù)交點問題11、D【解析】用分離參數(shù)法轉化為求函數(shù)的最大值得參數(shù)范圍【詳解】滿足的一切值,都有恒成立,,對滿足的一切值恒成立,,,時等號成立,所以實數(shù)的取值范圍為,故選:D.12、A【解析】根據(jù)指數(shù)式與對數(shù)的互化和對數(shù)的換底公式,求得,,進而結合對數(shù)的運算公式,即可求解.【詳解】由,可得,,由換底公式得,,所以,又因為,可得故選:A.二、選擇題(本大題共4小題,每小題5分,共20分,將答案寫在答題卡上.)13、【解析】由題意得,,又因為,則的取值范圍是14、2【解析】,令,易得函數(shù)為奇函數(shù),則,從而可得出答案.【詳解】解:,令,因為,所以函數(shù)為奇函數(shù),所以,即,所以,即.故答案為:2.15、35【解析】根據(jù)同角三角函數(shù)的關系,結合角A的范圍,即可得答案.【詳解】因為角A為△ABC的內角,所以A∈(0,π),因為cosA=-所以sinA=故答案為:316、【解析】首先利用面面垂直轉化出線面垂直,進一步求出線面的夾角,最后通過解直角三角形求出結果.【詳解】取BD中點O,連接AO,CO.因為AB=AD,所以,又平面平面,所以平面.因此,即為AC與平面所成的角,由于,,所以,又,所以【點睛】本題主要考查直線與平面所成的角,屬于基礎題型.三、解答題(本大題共6個小題,共70分。解答時要求寫出必要的文字說明、證明過程或演算步驟。)17、(1);(2).【解析】(1)根據(jù)相鄰兩個交點之間的距離為可求出,由圖像上一個最高點為可求出,,從而得到函數(shù)的解析式;(2)根據(jù)三角變換法則可得,再求出在上的最小值,利用對數(shù)函數(shù)的單調性即可求出實數(shù)的最小值【詳解】(1)∵,∴,解得.又函數(shù)圖象上一個最高點為,∴,(),∴(),又,∴,∴(2)把函數(shù)的圖象向左平移個單位長度,得到;然后再把所得圖象上各點的橫坐標伸長到原來的2倍(縱坐標不變),得到函數(shù)的圖象,即,∵,∴,,依題意知,,∴,即實數(shù)的最小值為.18、(1)更適合作為與的函數(shù)模型(2)果樹數(shù)量為時年利潤最大【解析】(1)將點代入和,求出兩個函數(shù),然后將和代入,看哪個算出的數(shù)據(jù)接近實際數(shù)據(jù)哪個就更適合作為與的函數(shù)模型.(2)根據(jù)(1)可得,利用二次函數(shù)的性質求最大利潤.【小問1詳解】①若選擇作為與的函數(shù)模型,將的坐標分別帶入,得解得此時,當時,,當時,,與表格中的和相差較大,所以不適合作為與的函數(shù)模型.②若選擇作為與的函數(shù)模型,將的坐標分別帶入,得解得此時,當時,,當時,,剛好與表格中的和相符合,所以更適合作為與的函數(shù)模型.【小問2詳解】由題可知,該果園最多120000棵該呂種果樹,所以確定的取值范圍為,令,則經(jīng)計算,當時,取最大值(萬元),即,時(每畝約38棵),利潤最大.19、(1),;(2)存在;,.【解析】(1)由已知條件可得出關于、的等式組,由此可解得函數(shù)、的解析式;(2)由偶函數(shù)的定義可得出,由函數(shù)的值域結合基本不等式以及對數(shù)函數(shù)的單調性可求得的值,進而可求得的值,即可得解.【小問1詳解】解:因為為、的“函數(shù)”,所以①,所以因為為奇函數(shù),為偶函數(shù),所以,所以②聯(lián)立①②解得,【小問2詳解】解:假設存在實數(shù)、,使得為,的“函數(shù)”則①因為是偶函數(shù),所以即,即,因為,整理得因為對恒成立,所②,因為,當且僅當,即時取等號所以,由于的值域為,所以,且又因為,所以,綜上,存在,滿足要求20、(1);(2).【解析】(1)將直線變形為斜截式即可得斜率;(2)由平行可得斜率,再由點斜式可得結果.【詳解】(1)由,可得,所以斜率為;(2)由直線m與平行,且過點,可得m的方程為,整理得:.21、(1)(2)當時,不等式的解集為;當時,不等式的解集為;當時,不等式的解集為【解析】(1)根據(jù)題意可得,且,3是方程的兩個實數(shù)根,利用韋達定理得到方程組,求出,,進一步可得不等式等價于,即,最后求解不等式即可;(2)當時,時,不等式等價于,從而分類討論,,三種情況即可求出不等式所對應的解集【小問1詳解】解:的不等式的解集為,,且,3是方程的兩個實數(shù)根,,,解得,,不等式等價于,即,故,解得或,所以該不等式的解集為;【小問2詳解】解:當時,不等式等價于,即,又,所以不等式等價于,當,即時,不等式為,解得;當,即時
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經(jīng)權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
- 6. 下載文件中如有侵權或不適當內容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 安培電流定律教學課件
- 建筑材料-混凝土 教學課件
- 工藝安全管理系統(tǒng)操作指南課件
- 小學語文課件-海洋之謎
- 建筑歷史與文化教學課件
- 危險的地方我不去
- 消防技術應用的試題及答案深入剖析
- 航空器維護保養(yǎng)知識試題及答案
- 肝病及罕見肝病兒童肝病概述
- 航空維修產(chǎn)業(yè)發(fā)展趨勢試題及答案
- 選品與采購全套教學課件
- 社區(qū)便民服務中心建設
- 數(shù)學文化與數(shù)學史融入
- 高二學考動員主題班會課件
- 水溝抹灰施工方案
- 人教版八年級物理下冊 實驗題03 浮力的實驗(含答案詳解)
- spc(xbar-r-xbar-s-中位數(shù)極差3合一控制圖)
- SCARA工業(yè)機器人手臂設計
- 公路工程竣工環(huán)境保護驗收調查報告
- 第二章殘疾康復
- 三年級下冊美術說課稿-第十二課 賽龍舟 ︳湘美版
評論
0/150
提交評論