版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)
文檔簡介
LecturePresentationSoftware
toaccompany
InvestmentAnalysisand
PortfolioManagement
SeventhEdition
by
FrankK.Reilly&KeithC.BrownChapter9LecturePresentationSoftware1Chapter9–MultifactorModelsofRiskandReturnQuestionstobeanswered:Whatisthearbitragepricingtheory(APT)andwhatareitssimilaritiesanddifferencesrelativetotheCAPM?WhatarethemajorassumptionsnotrequiredbytheAPTmodelcomparedtotheCAPM?HowdoyoutesttheAPTbyexamininganomaliesfoundwiththeCAPM?Chapter9–MultifactorModels2Chapter9-MultifactorModelsofRiskandReturnWhataretheempiricaltestresultsrelatedtotheAPT?WhydosomeauthorscontendthattheAPTmodelisuntestable?WhataretheconcernsrelatedtothemultiplefactorsoftheAPTmodel?Chapter9-MultifactorModels3Chapter9-MultifactorModelsofRiskandReturnWhataremultifactormodelsandhowarerelatedtotheAPT?Whatarethestepsnecessaryindevelopingausablemultifactormodel?Whatarethemultifactormodelsinpractice?Howisriskestimatedinamultifactorsetting?Chapter9-MultifactorModels4ArbitragePricingTheory(APT)CAPMiscriticizedbecauseofthedifficultiesinselectingaproxyforthemarketportfolioasabenchmarkAnalternativepricingtheorywithfewerassumptionswasdeveloped:ArbitragePricingTheoryArbitragePricingTheory(APT)5ArbitragePricingTheory-APTThreemajorassumptions: 1.Capitalmarketsareperfectlycompetitive 2.Investorsalwaysprefermorewealthtolesswealthwithcertainty 3.ThestochasticprocessgeneratingassetreturnscanbeexpressedasalinearfunctionofasetofKfactorsorindexesArbitragePricingTheory-APT6AssumptionsofCAPM
ThatWereNotRequiredbyAPTAPTdoesnotassumeAmarketportfoliothatcontainsallriskyassets,andismean-varianceefficientNormallydistributedsecurityreturnsQuadraticutilityfunction
AssumptionsofCAPM
ThatWere7ArbitragePricingTheory(APT)Fori=1toNwhere:=returnonassetiduringaspecifiedtimeperiodRiArbitragePricingTheory(APT)8ArbitragePricingTheory(APT)Fori=1toNwhere:=returnonassetiduringaspecifiedtimeperiod=expectedreturnforassetiRiEiArbitragePricingTheory(APT)9ArbitragePricingTheory(APT)Fori=1toNwhere:=returnonassetiduringaspecifiedtimeperiod=expectedreturnforasseti=reactioninasseti’sreturnstomovementsinacommonfactorRiEibikArbitragePricingTheory(APT)10ArbitragePricingTheory(APT)Fori=1toNwhere:=returnonassetiduringaspecifiedtimeperiod=expectedreturnforasseti=reactioninasseti’sreturnstomovementsinacommonfactor=acommonfactorwithazeromeanthatinfluencesthereturnsonallassetsRiEibikArbitragePricingTheory(APT)11ArbitragePricingTheory(APT)Fori=1toNwhere:=returnonassetiduringaspecifiedtimeperiod=expectedreturnforasseti=reactioninasseti’sreturnstomovementsinacommonfactor=acommonfactorwithazeromeanthatinfluencesthereturnsonallassets=auniqueeffectonasseti’sreturnthat,byassumption,iscompletelydiversifiableinlargeportfoliosandhasameanofzeroRiEibikArbitragePricingTheory(APT)12ArbitragePricingTheory(APT)Fori=1toNwhere:=returnonassetiduringaspecifiedtimeperiod=expectedreturnforasseti=reactioninasseti’sreturnstomovementsinacommonfactor=acommonfactorwithazeromeanthatinfluencesthereturnsonallassets=auniqueeffectonasseti’sreturnthat,byassumption,iscompletelydiversifiableinlargeportfoliosandhasameanofzero=numberofassetsRiEibikNArbitragePricingTheory(APT)13ArbitragePricingTheory(APT)Multiplefactorsexpectedtohaveanimpactonallassets:ArbitragePricingTheory(APT)14ArbitragePricingTheory(APT)Multiplefactorsexpectedtohaveanimpactonallassets:InflationArbitragePricingTheory(APT)15ArbitragePricingTheory(APT)Multiplefactorsexpectedtohaveanimpactonallassets:InflationGrowthinGNPArbitragePricingTheory(APT)16ArbitragePricingTheory(APT)Multiplefactorsexpectedtohaveanimpactonallassets:InflationGrowthinGNPMajorpoliticalupheavalsArbitragePricingTheory(APT)17ArbitragePricingTheory(APT)Multiplefactorsexpectedtohaveanimpactonallassets:InflationGrowthinGNPMajorpoliticalupheavalsChangesininterestratesArbitragePricingTheory(APT)18ArbitragePricingTheory(APT)Multiplefactorsexpectedtohaveanimpactonallassets:InflationGrowthinGNPMajorpoliticalupheavalsChangesininterestratesAndmanymore….ArbitragePricingTheory(APT)19ArbitragePricingTheory(APT)Multiplefactorsexpectedtohaveanimpactonallassets:InflationGrowthinGNPMajorpoliticalupheavalsChangesininterestratesAndmanymore….ContrastwithCAPMinsistencethatonlybetaisrelevantArbitragePricingTheory(APT)20ArbitragePricingTheory(APT)BikdeterminehoweachassetreactstothiscommonfactorEachassetmaybeaffectedbygrowthinGNP,buttheeffectswilldifferInapplicationofthetheory,thefactorsarenotidentifiedSimilartotheCAPM,theuniqueeffectsareindependentandwillbediversifiedawayinalargeportfolioArbitragePricingTheory(APT)21ArbitragePricingTheory(APT)APTassumesthat,inequilibrium,thereturnonazero-investment,zero-systematic-riskportfolioiszerowhentheuniqueeffectsarediversifiedawayTheexpectedreturnonanyasseti(Ei)canbeexpressedas:ArbitragePricingTheory(APT)22ArbitragePricingTheory(APT)where:=theexpectedreturnonanassetwithzerosystematicriskwhere=theriskpremiumrelatedtoeachofthecommonfactors-forexampletheriskpremiumrelatedtointerestrateriskbi=thepricingrelationshipbetweentheriskpremiumandasseti-thatishowresponsiveassetiistothiscommonfactorKArbitragePricingTheory(APT)23ExampleofTwoStocks
andaTwo-FactorModel=changesintherateofinflation.Theriskpremiumrelatedtothisfactoris1percentforevery1percentchangeintherate=percentgrowthinrealGNP.Theaverageriskpremiumrelatedtothisfactoris2percentforevery1percentchangeintherate=therateofreturnonazero-systematic-riskasset(zerobeta:boj=0)is3percentExampleofTwoStocks
andaT24ExampleofTwoStocks
andaTwo-FactorModel=theresponseofassetXtochangesintherateofinflationis0.50=theresponseofassetYtochangesintherateofinflationis2.00=theresponseofassetXtochangesinthegrowthrateofrealGNPis1.50=theresponseofassetYtochangesinthegrowthrateofrealGNPis1.75ExampleofTwoStocks
andaT25ExampleofTwoStocks
andaTwo-FactorModel
=.03+(.01)bi1+(.02)bi2Ex=.03+(.01)(0.50)+(.02)(1.50)=.065=6.5%
Ey=.03+(.01)(2.00)+(.02)(1.75)=.085=8.5%ExampleofTwoStocks
andaT26Roll-RossStudyThemethodologyusedinthestudyisasfollows:Estimatetheexpectedreturnsandthefactorcoefficientsfromtime-seriesdataonindividualassetreturnsUsetheseestimatestotestthebasiccross-sectionalpricingconclusionimpliedbytheAPTTheauthorsconcludedthattheevidencegenerallysupportedtheAPT,butacknowledgedthattheirtestswerenotconclusiveRoll-RossStudyThemethodology27Extensionsofthe
Roll-RossStudyCho,Elton,andGruberexaminedthenumberoffactorsinthereturn-generatingprocessthatwerepricedDhrymes,Friend,andGultekin(DFG)reexaminedtechniquesandtheirlimitationsandfoundthenumberoffactorsvarieswiththesizeoftheportfolioExtensionsofthe
Roll-RossS28TheAPTandAnomaliesSmall-firmeffectReinganum-resultsinconsistentwiththeAPTChen-supportedtheAPTmodeloverCAPMJanuaryanomalyGultekin-APTnotbetterthanCAPMBurmeisterandMcElroy-effectnotcapturedbymodel,butstillrejectedCAPMinfavorofAPTTheAPTandAnomaliesSmall-fir29Shanken’sChallengetoTestabilityoftheAPTIfreturnsarenotexplainedbyamodel,itisnotconsideredrejectionofamodel;howeverifthefactorsdoexplainreturns,itisconsideredsupportAPThasnoadvantagebecausethefactorsneednotbeobservable,soequivalentsetsmayconformtodifferentfactorstructuresEmpiricalformulationoftheAPTmayyielddifferentimplicationsregardingtheexpectedreturnsforagivensetofsecuritiesThus,thetheorycannotexplaindifferentialreturnsbetweensecuritiesbecauseitcannotidentifytherelevantfactorstructurethatexplainsthedifferentialreturnsShanken’sChallengetoTestabi30AlternativeTestingTechniquesJobsonproposesAPTtestingwithamultivariatelinearregressionmodelBrownandWeinsteinproposeusingabilinearparadigmOthersproposenewmethodologiesAlternativeTestingTechniques31MultifactorModelsandRiskEstimation Inamultifactormodel,theinvestorchoosestheexactnumberandidentityofriskfactorsMultifactorModelsandRiskEs32MultifactorModelsandRiskEstimationMultifactorModelsinPracticeMacroeconomic-BasedRiskFactorModelsMultifactorModelsandRiskEs33MultifactorModelsandRiskEstimationMultifactorModelsinPracticeMacroeconomic-BasedRiskFactorModelsMicroeconomic-BasedRiskFactorModelsMultifactorModelsandRiskEs34MultifactorModelsandRiskEstimationMultifactorModelsinPracticeMacroeconomic-BasedRiskFactorModelsMicroeconomic-BasedRiskFactorModelsExtensionsofCharacteristic-BasedRiskFactorModelsMultifactorModelsandRiskEs35EstimatingRiskinaMultifactorSetting:ExamplesEstimatingExpectedReturnsforIndividualStocksEstimatingRiskinaMultifact36EstimatingRiskinaMultifactorSetting:ExamplesEstimatingExpectedReturnsforIndividualStocksComparingMutualFundRiskExposuresEstimatingRiskinaMultifact37TheInternet
InvestmentsOnlineTheInternet
InvestmentsOnlin38Futuretopics
Chapter10
AnalysisofFinancialStatementsFuturetopics
Chapter10Analy39LecturePresentationSoftware
toaccompany
InvestmentAnalysisand
PortfolioManagement
SeventhEdition
by
FrankK.Reilly&KeithC.BrownChapter9LecturePresentationSoftware40Chapter9–MultifactorModelsofRiskandReturnQuestionstobeanswered:Whatisthearbitragepricingtheory(APT)andwhatareitssimilaritiesanddifferencesrelativetotheCAPM?WhatarethemajorassumptionsnotrequiredbytheAPTmodelcomparedtotheCAPM?HowdoyoutesttheAPTbyexamininganomaliesfoundwiththeCAPM?Chapter9–MultifactorModels41Chapter9-MultifactorModelsofRiskandReturnWhataretheempiricaltestresultsrelatedtotheAPT?WhydosomeauthorscontendthattheAPTmodelisuntestable?WhataretheconcernsrelatedtothemultiplefactorsoftheAPTmodel?Chapter9-MultifactorModels42Chapter9-MultifactorModelsofRiskandReturnWhataremultifactormodelsandhowarerelatedtotheAPT?Whatarethestepsnecessaryindevelopingausablemultifactormodel?Whatarethemultifactormodelsinpractice?Howisriskestimatedinamultifactorsetting?Chapter9-MultifactorModels43ArbitragePricingTheory(APT)CAPMiscriticizedbecauseofthedifficultiesinselectingaproxyforthemarketportfolioasabenchmarkAnalternativepricingtheorywithfewerassumptionswasdeveloped:ArbitragePricingTheoryArbitragePricingTheory(APT)44ArbitragePricingTheory-APTThreemajorassumptions: 1.Capitalmarketsareperfectlycompetitive 2.Investorsalwaysprefermorewealthtolesswealthwithcertainty 3.ThestochasticprocessgeneratingassetreturnscanbeexpressedasalinearfunctionofasetofKfactorsorindexesArbitragePricingTheory-APT45AssumptionsofCAPM
ThatWereNotRequiredbyAPTAPTdoesnotassumeAmarketportfoliothatcontainsallriskyassets,andismean-varianceefficientNormallydistributedsecurityreturnsQuadraticutilityfunction
AssumptionsofCAPM
ThatWere46ArbitragePricingTheory(APT)Fori=1toNwhere:=returnonassetiduringaspecifiedtimeperiodRiArbitragePricingTheory(APT)47ArbitragePricingTheory(APT)Fori=1toNwhere:=returnonassetiduringaspecifiedtimeperiod=expectedreturnforassetiRiEiArbitragePricingTheory(APT)48ArbitragePricingTheory(APT)Fori=1toNwhere:=returnonassetiduringaspecifiedtimeperiod=expectedreturnforasseti=reactioninasseti’sreturnstomovementsinacommonfactorRiEibikArbitragePricingTheory(APT)49ArbitragePricingTheory(APT)Fori=1toNwhere:=returnonassetiduringaspecifiedtimeperiod=expectedreturnforasseti=reactioninasseti’sreturnstomovementsinacommonfactor=acommonfactorwithazeromeanthatinfluencesthereturnsonallassetsRiEibikArbitragePricingTheory(APT)50ArbitragePricingTheory(APT)Fori=1toNwhere:=returnonassetiduringaspecifiedtimeperiod=expectedreturnforasseti=reactioninasseti’sreturnstomovementsinacommonfactor=acommonfactorwithazeromeanthatinfluencesthereturnsonallassets=auniqueeffectonasseti’sreturnthat,byassumption,iscompletelydiversifiableinlargeportfoliosandhasameanofzeroRiEibikArbitragePricingTheory(APT)51ArbitragePricingTheory(APT)Fori=1toNwhere:=returnonassetiduringaspecifiedtimeperiod=expectedreturnforasseti=reactioninasseti’sreturnstomovementsinacommonfactor=acommonfactorwithazeromeanthatinfluencesthereturnsonallassets=auniqueeffectonasseti’sreturnthat,byassumption,iscompletelydiversifiableinlargeportfoliosandhasameanofzero=numberofassetsRiEibikNArbitragePricingTheory(APT)52ArbitragePricingTheory(APT)Multiplefactorsexpectedtohaveanimpactonallassets:ArbitragePricingTheory(APT)53ArbitragePricingTheory(APT)Multiplefactorsexpectedtohaveanimpactonallassets:InflationArbitragePricingTheory(APT)54ArbitragePricingTheory(APT)Multiplefactorsexpectedtohaveanimpactonallassets:InflationGrowthinGNPArbitragePricingTheory(APT)55ArbitragePricingTheory(APT)Multiplefactorsexpectedtohaveanimpactonallassets:InflationGrowthinGNPMajorpoliticalupheavalsArbitragePricingTheory(APT)56ArbitragePricingTheory(APT)Multiplefactorsexpectedtohaveanimpactonallassets:InflationGrowthinGNPMajorpoliticalupheavalsChangesininterestratesArbitragePricingTheory(APT)57ArbitragePricingTheory(APT)Multiplefactorsexpectedtohaveanimpactonallassets:InflationGrowthinGNPMajorpoliticalupheavalsChangesininterestratesAndmanymore….ArbitragePricingTheory(APT)58ArbitragePricingTheory(APT)Multiplefactorsexpectedtohaveanimpactonallassets:InflationGrowthinGNPMajorpoliticalupheavalsChangesininterestratesAndmanymore….ContrastwithCAPMinsistencethatonlybetaisrelevantArbitragePricingTheory(APT)59ArbitragePricingTheory(APT)BikdeterminehoweachassetreactstothiscommonfactorEachassetmaybeaffectedbygrowthinGNP,buttheeffectswilldifferInapplicationofthetheory,thefactorsarenotidentifiedSimilartotheCAPM,theuniqueeffectsareindependentandwillbediversifiedawayinalargeportfolioArbitragePricingTheory(APT)60ArbitragePricingTheory(APT)APTassumesthat,inequilibrium,thereturnonazero-investment,zero-systematic-riskportfolioiszerowhentheuniqueeffectsarediversifiedawayTheexpectedreturnonanyasseti(Ei)canbeexpressedas:ArbitragePricingTheory(APT)61ArbitragePricingTheory(APT)where:=theexpectedreturnonanassetwithzerosystematicriskwhere=theriskpremiumrelatedtoeachofthecommonfactors-forexampletheriskpremiumrelatedtointerestrateriskbi=thepricingrelationshipbetweentheriskpremiumandasseti-thatishowresponsiveassetiistothiscommonfactorKArbitragePricingTheory(APT)62ExampleofTwoStocks
andaTwo-FactorModel=changesintherateofinflation.Theriskpremiumrelatedtothisfactoris1percentforevery1percentchangeintherate=percentgrowthinrealGNP.Theaverageriskpremiumrelatedtothisfactoris2percentforevery1percentchangeintherate=therateofreturnonazero-systematic-riskasset(zerobeta:boj=0)is3percentExampleofTwoStocks
andaT63ExampleofTwoStocks
andaTwo-FactorModel=theresponseofassetXtochangesintherateofinflationis0.50=theresponseofassetYtochangesintherateofinflationis2.00=theresponseofassetXtochangesinthegrowthrateofrealGNPis1.50=theresponseofassetYtochangesinthegrowthrateofrealGNPis1.75ExampleofTwoStocks
andaT64ExampleofTwoStocks
andaTwo-FactorModel
=.03+(.01)bi1+(.02)bi2Ex=.03+(.01)(0.50)+(.02)(1.50)=.065=6.5%
Ey=.03+(.01)(2.00)+(.02)(1.75)=.085=8.5%ExampleofTwoStocks
andaT65Roll-RossStudyThemethodologyusedinthestudyisasfollows:Estimatetheexpectedreturnsandthefactorcoefficientsfromtime-seriesdataonindividualassetreturnsUsetheseestimatestotestthebasiccross-sectionalpricingconclusionimpliedbytheAPTTheauthorsconcludedthattheevidencegenerallysupportedtheAPT,butacknowledgedthattheirtestswerenotconclusiveRoll-RossStudyThemethodology66Extensionsofthe
Roll-RossStudyCho,Elton,andGruberexaminedthenumberoffactorsinthereturn-generatingprocessthatwerepricedDhrymes,Friend,andGultekin(DFG)reexaminedtechniquesandtheirlimitationsandfoundthenumberoffactorsvarieswiththesizeoftheportfolioExtensionsofthe
Roll-RossS67TheAPTandAnomaliesSmall-firmeffectReinganum-resultsinconsistentwiththeAPTChen-supportedtheAPTmodeloverCAPMJanuaryanomalyGultekin-APTnotbetterthanCAPMBurmeisterandMcElroy-effectnotcapturedbymodel,butstillrejectedCAPMinfavorofAPTTheAPTandAnomaliesS
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
- 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 文化娛樂行業(yè)安全管理工作總結(jié)
- 區(qū)塊鏈行業(yè)助理工作描述
- 小學安全工作總結(jié)集錦六篇
- 美容美發(fā)店衛(wèi)生要求
- 銀行保險行業(yè)助理職責總結(jié)
- 車輛行業(yè)前臺服務經(jīng)驗分享
- 教育科研話務員工作總結(jié)
- 2024年度單位個人現(xiàn)金借款合同爭議解決條款3篇
- 果干課程設計
- 直流交換器課程設計
- 全國婦聯(lián)統(tǒng)計軟件
- GMP培訓資料無菌附錄ppt課件(PPT 164頁)
- JIS S6006-2020 英文版 鉛筆 彩色鉛筆和鉛筆
- 發(fā)電機自動電壓調(diào)節(jié)器說明書
- 小學環(huán)保教育《我與環(huán)境》校本課程教材
- 應用數(shù)學第4講-兩個重要的極限.ppt
- 《涂裝工程安全設計規(guī)范》噴漆室
- 促銷活動方案(共29頁).ppt
- 自動打印機機械原理課程設計
- 貝類增養(yǎng)殖考試資料
- 混凝土熱工計算步驟及公式
評論
0/150
提交評論