版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)
文檔簡介
2022-2023學年九上數(shù)學期末模擬試卷注意事項:1.答題前,考生先將自己的姓名、準考證號碼填寫清楚,將條形碼準確粘貼在條形碼區(qū)域內(nèi)。2.答題時請按要求用筆。3.請按照題號順序在答題卡各題目的答題區(qū)域內(nèi)作答,超出答題區(qū)域書寫的答案無效;在草稿紙、試卷上答題無效。4.作圖可先使用鉛筆畫出,確定后必須用黑色字跡的簽字筆描黑。5.保持卡面清潔,不要折暴、不要弄破、弄皺,不準使用涂改液、修正帶、刮紙刀。一、選擇題(每題4分,共48分)1.拋物線y=ax2+bx+c(a≠0)的圖象如圖,則下列結(jié)論中正確的是()A.a(chǎn)b<0 B.a(chǎn)+b+2c﹣2>0 C.b2﹣4ac<0 D.2a﹣b>02.如圖,A,B,C是⊙O上的三點,∠BAC=55°,則∠BOC的度數(shù)為()A.100° B.110° C.125° D.130°3.如圖,是由兩個正方體組成的幾何體,則該幾何體的俯視圖為()A. B. C. D.4.以下給出的幾何體中,主視圖是矩形,俯視圖是圓的是()A. B. C. D.5.如圖,在Rt△ABC中,∠ACB=90°,AC=BC=1,將繞點A逆時針旋轉(zhuǎn)30°后得到Rt△ADE,點B經(jīng)過的路徑為弧BD,則圖中陰影部分的面積是()A. B. C.- D.6.下列命題正確的是(
)A.圓是軸對稱圖形,任何一條直徑都是它的對稱軸B.平分弦的直徑垂直于弦,并且平分弦所對的弧C.相等的圓心角所對的弧相等,所對的弦相等D.同弧或等弧所對的圓周角相等7.已知點A(,),B(1,),C(2,)是函數(shù)圖象上的三點,則,,的大小關(guān)系是()A.<< B.<< C.<< D.無法確定8.如圖,直線AC,DF被三條平行線所截,若DE:EF=1:2,AB=2,則AC的值為()A.6 B.4 C.3 D.9.如圖,把繞點逆時針旋轉(zhuǎn),得到,點恰好落在邊上的點處,連接,則的度數(shù)為()A. B. C. D.10.某藥品原價為100元,連續(xù)兩次降價后,售價為64元,則的值為()A.10 B.20 C.23 D.3611.如圖所示,△的頂點是正方形網(wǎng)格的格點,則的值是()A. B. C. D.12.如圖,在△ABC中,點D、E分別在邊AB、AC上,則在下列五個條件中:①∠AED=∠B;②DE∥BC;③=;④AD·BC=DE·AC;⑤∠ADE=∠C,能滿足△ADE∽△ACB的條件有()A.1個 B.2 C.3個 D.4個二、填空題(每題4分,共24分)13.如圖,圓心都在x軸正半軸上的半圓O1,半圓O2,…,半圓On與直線l相切.設(shè)半圓O1,半圓O2,…,半圓On的半徑分別是r1,r2,…,rn,則當直線l與x軸所成銳角為30°,且r1=1時,r2018=________.14.菱形的兩條對角線分別是,,則菱形的邊長為________,面積為________.15.已知二次函數(shù)(),與的部分對應值如下表所示:-10123461-2-3-2下面有四個論斷:①拋物線()的頂點為;②;③關(guān)于的方程的解為,;④當時,的值為正,其中正確的有_______.16.一個等腰三角形的兩條邊長分別是方程x2﹣7x+10=0的兩根,則該等腰三角形的周長是_____.17.如圖,點A的坐標為(4,2).將點A繞坐標原點O旋轉(zhuǎn)90°后,再向左平移1個單位長度得到點A′,則過點A′的正比例函數(shù)的解析式為_____.18.如圖,在菱形c中,分別是邊,對角線與邊上的動點,連接,若,則的最小值是___.三、解答題(共78分)19.(8分)如圖,是的直徑,半徑OC⊥弦AB,點為垂足,連、.(1)若,求的度數(shù);(2)若,,求的半徑.20.(8分)如圖,點是的內(nèi)心,的延長線交于點,交的外接圓于點,連接,過點作直線,使;(1)求證:直線是的切線;(2)若,,求.21.(8分)已知二次函數(shù)中,函數(shù)與自變量的部分對應值如下表:(1)求該二次函數(shù)的關(guān)系式;(2)若,兩點都在該函數(shù)的圖象上,試比較與的大?。?2.(10分)如圖,Rt△ABC中,∠B=90°,點D在邊AC上,且DE⊥AC交BC于點E.(1)求證:△CDE∽△CBA;(2)若AB=3,AC=5,E是BC中點,求DE的長.23.(10分)如圖,圓內(nèi)接四邊形ABDC,AB是⊙O的直徑,OD⊥BC于E.(1)求證:∠BCD=∠CBD;(2)若BE=4,AC=6,求DE的長.24.(10分)如圖,已知等邊,以邊為直徑的圓與邊,分別交于點、,過點作于點.(1)求證:是的切線;(2)過點作于點,若等邊的邊長為8,求的長.25.(12分)為了測量山坡上的電線桿PQ的高度,某數(shù)學活動小組的同學們帶上自制的測傾器和皮尺來到山腳下,他們在A處測得信號塔頂端P的仰角是45°,信號塔底端點Q的仰角為30°,沿水平地面向前走100米到B處,測得信號塔頂端P的仰角是60°,求信號塔PQ得高度.26.如圖,?ABCD中,點E,F(xiàn)分別是BC和AD邊上的點,AE垂直平分BF,交BF于點P,連接EF,PD.(1)求證:平行四邊形ABEF是菱形;(2)若AB=4,AD=6,∠ABC=60°,求tan∠ADP的值.
參考答案一、選擇題(每題4分,共48分)1、D【解析】利用拋物線開口方向得到a>0,利用拋物線的對稱軸在y軸的左側(cè)得到b>0,則可對A選項進行判斷;利用x=1時,y=2得到a+b=2﹣c,則a+b+2c﹣2=c<0,于是可對B選項進行判斷;利用拋物線與x軸有2個交點可對C選項進行判斷;利用﹣1<﹣<0可對D選項進行判斷.【詳解】∵拋物線開口向上,∴a>0,∵拋物線的對稱軸在y軸的左側(cè),∴a、b同號,即b>0,∴ab>0,故A選項錯誤;∵拋物線與y軸的交點在x軸下方,∴c<0,∵x=1時,y=2,∴a+b+c=2,∴a+b+2c﹣2=2+c﹣2=c<0,故B選項錯誤;∵拋物線與x軸有2個交點,∴△=b2﹣4ac>0,故C選項錯誤;∵﹣1<﹣<0,而a>0,∴﹣2a<﹣b,即2a﹣b>0,所以D選項正確.故選:D.【點睛】本題主要考查二次函數(shù)解析式的系數(shù)的幾何意義,掌握二次函數(shù)解析式的系數(shù)與圖象的開口方向,對稱軸,圖象與坐標軸的交點的位置關(guān)系,是解題的關(guān)鍵.2、B【分析】由點A、B、C是⊙O上的三點,∠BAC=40°,根據(jù)在同圓或等圓中,同弧或等弧所對的圓周角等于這條弧所對的圓心角的一半,即可求得∠BOC的度數(shù).【詳解】解:∵∠BAC=55°,∴∠BOC=2∠BAC=110°.(圓周角定理)故選:B.【點睛】本題考查了圓周角定理:在同圓或等圓中,同弧或等弧所對的圓周角相等,都等于這條弧所對的圓心角的一半3、D【分析】根據(jù)俯視圖是從上面看得到的圖形進行求解即可.【詳解】俯視圖為從上往下看,所以小正方形應在大正方形的右上角,故選D.【點睛】本題考查了簡單組合體的三視圖,熟知俯視圖是從上方看得到的圖形是解題的關(guān)鍵.4、D【分析】根據(jù)幾何體的正面看得到的圖形,可得答案.【詳解】A、主視圖是圓,俯視圖是圓,故A不符合題意;B、主視圖是矩形,俯視圖是矩形,故B不符合題意;C、主視圖是三角形,俯視圖是圓,故C不符合題意;D、主視圖是個矩形,俯視圖是圓,故D符合題意;故選D.【點睛】本題考查了簡單幾何體的三視圖,熟記簡單幾何的三視圖是解題關(guān)鍵.5、A【分析】先根據(jù)勾股定理得到AB=,再根據(jù)扇形的面積公式計算出S扇形ABD,由旋轉(zhuǎn)的性質(zhì)得到Rt△ADE≌Rt△ACB,于是S陰影部分=S△ADE+S扇形ABD-S△ABC=S扇形ABD.【詳解】∵∠ACB=90°,AC=BC=1,∴AB=,∴S扇形ABD=,又∵Rt△ABC繞A點逆時針旋轉(zhuǎn)30°后得到Rt△ADE,∴Rt△ADE≌Rt△ACB,∴S陰影部分=S△ADE+S扇形ABD?S△ABC=S扇形ABD=,故選A.【點睛】本題考查扇形面積計算,熟記扇形面積公式,采用作差法計算面積是解題的關(guān)鍵.6、D【分析】根據(jù)圓的對稱性、圓周角定理、垂徑定理逐項判斷即可.【詳解】解:A.圓是軸對稱圖形,它有無數(shù)條對稱軸,其對稱軸是直徑所在的直線或過圓心的直線,此命題不正確;B.平分弦(不是直徑)的直徑垂直于弦,并且平分弦所對的弧,此命題不正確;C.在同圓或等圓中,相等的圓心角所對的弧相等,所對的弦相等,此命題不正確;D.同弧或等弧所對的圓周角相等,此命題正確;故選:D.【點睛】本題考查的知識點是圓的對稱性、圓周角定理以及垂徑定理,需注意的是對稱軸是一條直線并非是線段,而圓的兩條直徑互相平分但不一定垂直.7、B【分析】直接根據(jù)反比例函數(shù)的性質(zhì)排除選項即可.【詳解】因為點A(,),B(1,),C(2,)是函數(shù)圖象上的三點,,反比例函數(shù)的圖像在二、四象限,所以在每一象限內(nèi)y隨x的的增大而增大,即;故選B.【點睛】本題主要考查反比例函數(shù)的性質(zhì),熟練掌握反比例函數(shù)的性質(zhì)是解題的關(guān)鍵.8、A【分析】根據(jù)平行線分線段成比例定理得到比例式,求出BC,計算即可.【詳解】解:∵l1∥l2∥l3,∴,又∵AB=2,∴BC=4,∴AC=AB+BC=1.
故選:A.【點睛】本題考查的是平行線分線段成比例定理,靈活運用定理、找準對應關(guān)系是解題的關(guān)鍵.9、D【分析】由旋轉(zhuǎn)的性質(zhì)可得AB'=AB,∠BAB'=50°,由等腰三角形的性質(zhì)可得∠AB'B=∠ABB'=65°.【詳解】解:∵Rt△ABC繞點A逆時針旋轉(zhuǎn)50°得到Rt△AB′C′,
∴AB'=AB,∠BAB'=50°,∴,故選:D.【點睛】本題考查了旋轉(zhuǎn)的性質(zhì),等腰三角形的性質(zhì),掌握旋轉(zhuǎn)的性質(zhì)是本題的關(guān)鍵.10、B【解析】根據(jù)題意可列出一元二次方程100(1-)2=64,即可解出此題.【詳解】依題意列出方程100(1-)2=64,解得a=20,(a=180,舍去)故選B.【點睛】此題主要考察一元二次方程的應用,依題意列出方程是解題的關(guān)鍵.11、B【分析】過點C作CD⊥AB,利用間接法求出△ABC的面積,利用勾股定理求出AB、BC的長度,然后求出CD的長度,即可得到∠B的度數(shù),然后得到答案.【詳解】解:如圖,過點C作CD⊥AB,∴,∵,,又∵,∴,在Rt△BCD中,,∴,∴;故選:B.【點睛】本題考查了特殊角的三角函數(shù)值,勾股定理與網(wǎng)格問題,解題的關(guān)鍵是作出輔助線正確構(gòu)造直角三角形,利用三角函數(shù)值進行求解.12、D【分析】根據(jù)相似三角形的判定定理判斷即可.【詳解】解:①由∠AED=∠B,∠A=∠A,則可判斷△ADE∽△ACB;②DE∥BC,則有∠AED=∠C,∠ADE=∠B,則可判斷△ADE∽△ACB;③=,∠A=∠A,則可判斷△ADE∽△ACB;④AD·BC=DE·AC,可化為,此時不確定∠ADE=∠ACB,故不能確定△ADE∽△ACB;⑤由∠ADE=∠C,∠A=∠A,則可判斷△ADE∽△ACB;所以能滿足△ADE∽△ACB的條件是:①②③⑤,共4個,故選:D.【點睛】此題考查了相似三角形的判定,關(guān)鍵是掌握相似三角形的三種判定定理.二、填空題(每題4分,共24分)13、1【解析】分別作O1A⊥l,O2B⊥l,O3C⊥l,如圖,
∵半圓O1,半圓O2,…,半圓On與直線L相切,
∴O1A=r1,O2B=r2,O3C=r3,
∵∠AOO1=30°,
∴OO1=2O1A=2r1=2,
在Rt△OO2B中,OO2=2O2B,即2+1+r2=2r2,
∴r2=3,
在Rt△OO2C中,OO3=2O2C,即2+1+2×3++r3=2r3,
∴r3=9=32,
同理可得r4=27=33,
所以r2018=1.
故答案為1.點睛:找規(guī)律題需要記憶常見數(shù)列1,2,3,4……n1,3,5,7……2n-12,4,6,8……2n2,4,8,16,32……1,4,9,16,25……2,6,12,20……n(n+1)一般題目中的數(shù)列是利用常見數(shù)列變形而來,其中后一項比前一項多一個常數(shù),是等差數(shù)列,列舉找規(guī)律.后一項是前一項的固定倍數(shù),則是等比數(shù)列,列舉找規(guī)律.14、【分析】根據(jù)菱形的對角線互相垂直平分求出兩對角線的一半,然后利用勾股定理求出菱形的邊長,再根據(jù)菱形的面積等于對角線乘積的一半求菱形的面積即可.【詳解】∵菱形的兩條對角線長分別為6cm,8cm,∴對角線的一半分別為3cm,4cm,∴根據(jù)勾股定理可得菱形的邊長為:=5cm,∴面積S=×6×8=14cm1.故答案為5;14.【點睛】本題考查了菱形的性質(zhì)及勾股定理的應用,熟記菱形的性質(zhì)是解決本題的關(guān)鍵.15、①③④【分析】根據(jù)表格,即可判斷出拋物線的對稱軸,從而得到頂點坐標,即可判斷①;根據(jù)拋物線的對稱性即可判斷②;根據(jù)表格中函數(shù)值為-2時,對應的x的值,即可判斷③;根據(jù)二次函數(shù)的增減性即可判斷④.【詳解】解:①根據(jù)表格可知:拋物線()的對稱軸為x=2,∴拋物線()的頂點為,故①正確;②根據(jù)拋物線的對稱性可知:當x=4和x=0時,對應的函數(shù)值相同,∴m=1,故②錯誤;③由表格可知:對于二次函數(shù),當y=-2時,對應的x的值為1或3∴關(guān)于的方程的解為,,故③正確;④由表格可知:當x<2時,y隨x的增大而減小∵,拋物線過(0,1)∴當時,>1>0∴當時,的值為正,故④正確.故答案為:①③④.【點睛】此題考查的是二次函數(shù)的圖象及性質(zhì),掌握二次函數(shù)的對稱性、頂點坐標與最值、二次函數(shù)與一元二次方程的關(guān)系和二次函數(shù)的增減性是解決此題的關(guān)鍵.16、1【分析】首先利用因式分解法解方程,再利用三角形三邊關(guān)系得出各邊長,進而得出答案.【詳解】解:x2﹣7x+10=0(x﹣2)(x﹣5)=0,解得:x1=2,x2=5,故等腰三角形的腰長只能為5,5,底邊長為2,則其周長為:5+5+2=1.故答案為:1.【點睛】本題考查因式分解法解一元二次方程,需要熟悉三角形三邊的關(guān)系以及等腰三角形的性質(zhì).17、y=﹣x或y=-4x【解析】分析:直接利用旋轉(zhuǎn)的性質(zhì)結(jié)合平移的性質(zhì)得出對應點位置,再利用待定系數(shù)法求出正比例函數(shù)解析式.詳解:當點A繞坐標原點O逆時針旋轉(zhuǎn)90°后,再向左平移1個單位長度得到點A′,則A′(-3,4),設(shè)過點A′的正比例函數(shù)的解析式為:y=kx,則4=-3k,解得:k=-,則過點A′的正比例函數(shù)的解析式為:y=-x,同理可得:點A繞坐標原點O順時針旋轉(zhuǎn)90°后,再向左平移1個單位長度得到點A′,此時A′(1,-4),設(shè)過點A′的正比例函數(shù)的解析式為:y=k′x,則-4=k′,則過點A′的正比例函數(shù)的解析式為:y=-4x.故答案為y=﹣x或y=-4x.點睛:此題主要考查了旋轉(zhuǎn)的性質(zhì)、平移的性質(zhì)、待定系數(shù)法求出正比例函數(shù)解析式,正確得出對應點坐標是解題關(guān)鍵.18、【分析】作點Q關(guān)于BD對稱的對稱點Q’,連接PQ,根據(jù)兩平行線之間垂線段最短,即有當E、P、Q’在同一直線上且時,的值最小,再利用菱形的面積公式,求出的最小值.【詳解】作點Q關(guān)于BD對稱的對稱點Q’,連接PQ.∵四邊形ABCD為菱形∴,∴當E、P、Q’在同一直線上時,的值最小∵兩平行線之間垂線段最短∴當時,的值最小∵∴,∴∵∴解得∴的最小值是.故答案為:.【點睛】本題考查了菱形的綜合應用題,掌握菱形的面積公式以及兩平行線之間垂線段最短是解題的關(guān)鍵.三、解答題(共78分)19、(1);(2)【分析】(1)根據(jù)垂徑定理得到,根據(jù)圓周角定理解答;(2)根據(jù)圓周角定理得到∠C=90°,根據(jù)等腰三角形的性質(zhì)得到∠A=∠AEC=30°,根據(jù)余弦的定義求出AE即可.【詳解】(1)連接.∵,∴,∴,∵,∴.(2)∵是的直徑,∴,∴,∵,∴,∴,∵,∴,∵,∴,∵,連接AC∵是的直徑,∴,∴,即解得AE=∴,∴的半徑為.【點睛】本題考查圓周角定理,垂徑定理,圓心角,弧,弦之間的關(guān)系及銳角三角函數(shù)等知識,解題的關(guān)鍵是熟練掌握基本知識,屬于中考??碱}型.20、(1)證明見解析;(2).【分析】(1)首先根據(jù)三角形內(nèi)心的性質(zhì)得出,然后利用等弧對等角進行等量轉(zhuǎn)換,得出,最后利用垂徑定理即可得證;(2)利用相似三角形的判定以及性質(zhì)即可得解.【詳解】(1)證明:如圖所示,連接,∵點是的內(nèi)心,∴,∴,∴,又∵,,∴,∴,∴,又∵為半徑,∴直線是的切線;(2)∵,∴,又∵(公共角),∴,∴,即,∵,∴∴∴.【點睛】此題主要考查圓的切線的證明以及相似三角形的判定與性質(zhì),熟練掌握,即可解題.21、(1);(2)當時,;當時,;當時,.【分析】(1)根據(jù)表格得到(0,5)與(1,2)都在函數(shù)圖象上,代入函數(shù)解析式求出b與c的值,即可確定出解析式;(2)求出,根據(jù)m的取值分類討論即可求解.【詳解】根據(jù)題意,當時,;當時,;解得:,該二次函數(shù)關(guān)系式為;(2),兩點都在函數(shù)的圖象上,,,①當,即時,;②當,即時,;③當,即時,.【點睛】此題考查了待定系數(shù)法求二次函數(shù)解析式,二次函數(shù)圖象上點的坐標特征,以及二次函數(shù)的最值,熟練掌握待定系數(shù)法是解本題的關(guān)鍵.22、(1)證明見解析;(2)DE=.【分析】(1)由DE⊥AC,∠B=90°可得出∠CDE=∠B,再結(jié)合公共角相等,即可證出△CDE∽△CBA;(2)在Rt△ABC中,利用勾股定理可求出BC的長,結(jié)合點E為線段BC的中點可求出CE的長,再利用相似三角形的性質(zhì),即可求出DE的長.【詳解】(1)∵DE⊥AC,∠B=90°,∴∠CDE=90°=∠B.又∵∠C=∠C,∴△CDE∽△CBA.(2)在Rt△ABC中,∠B=90°,AB=3,AC=5,∴BC==1.∵E是BC中點,∴CE=BC=2.∵△CDE∽△CBA,∴=,即=,∴DE==.【點睛】本題考查了相似三角形的判定與性質(zhì)以及勾股定理,解題的關(guān)鍵是:(1)利用“兩角對應相等兩三角形相似”證出兩三角形相似;(2)利用相似三角形的性質(zhì)求出DE的長.23、(1)詳見解析;(1)1.【分析】(1)根據(jù)OD⊥BC于E可知,所以BD=CD,故可得出結(jié)論;(1)先根據(jù)圓周角定理得出∠ACB=90°,再OD⊥BC于E可知OD∥AC,由于點O是AB的中點,所以O(shè)E是△ABC的中位線,故,在Rt△OBE中根據(jù)勾股定理可求出OB的長,故可得出DE的長,進而得出結(jié)論.【詳解】解:(1)∵OD⊥BC于E,∴,∴BD=CD,
∴∠BCD=∠CBD;(1)∵AB是⊙O的直徑,
∴∠ACB=90°,
∵OD⊥BC于E,
∴OD∥AC,
∵點O是AB的中點,
∴OE是△ABC的中位線,在Rt△OBE中,
∵BE=4,OE=3,,即OD=OB=5,
∴DE=OD-OE=5-3=1.24、(1)證明見解析;(2).【分析】(1)連接,通過證明是等邊三角形可得,從而證明,得證,即可證明是的切線;(2)根據(jù)三角函數(shù)求出FC、HC的長度,然后根據(jù)勾股定理即可求出的長.【詳解】(1)證明:連接.是等邊三
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
- 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 《生活中的折射現(xiàn)象》課件
- 滑槽式自動導向移動平臺在賀駝煤礦1111工作面液壓支架回撤中的應用
- 2025年度智慧城市建設(shè)合同標的招標文件編制與實施規(guī)劃4篇
- 2025年度教育培訓機構(gòu)個人勞務(wù)合同樣本4篇
- 2025年度存單質(zhì)押擔保房地產(chǎn)抵押貸款合同4篇
- 二零二五年度創(chuàng)業(yè)擔保貸款政策支持合作協(xié)議3篇
- 《公關(guān)員規(guī)章制度》課件
- 二零二五年度汽車租賃與保險捆綁服務(wù)合同70863(安全版)4篇
- 二零二五年度豬圈建造與生態(tài)循環(huán)農(nóng)業(yè)合同4篇
- 2025年度鋁材行業(yè)市場準入與資質(zhì)審核合同3篇
- 中國大百科全書(第二版全32冊)08
- 初中古詩文言文背誦內(nèi)容
- 天然氣分子篩脫水裝置吸附計算書
- 檔案管理項目 投標方案(技術(shù)方案)
- 蘇教版六年級上冊100道口算題(全冊完整版)
- 2024年大學試題(宗教學)-佛教文化筆試考試歷年典型考題及考點含含答案
- 計算機輔助設(shè)計智慧樹知到期末考試答案章節(jié)答案2024年青島城市學院
- 知識庫管理規(guī)范大全
- 電腦耗材實施方案、供貨方案、售后服務(wù)方案
- 環(huán)衛(wèi)項目年終工作總結(jié)
- 弘揚教育家精神爭做四有好老師心得10篇
評論
0/150
提交評論