漳州市重點中學2022年中考試題猜想數(shù)學試卷含解析_第1頁
漳州市重點中學2022年中考試題猜想數(shù)學試卷含解析_第2頁
漳州市重點中學2022年中考試題猜想數(shù)學試卷含解析_第3頁
漳州市重點中學2022年中考試題猜想數(shù)學試卷含解析_第4頁
漳州市重點中學2022年中考試題猜想數(shù)學試卷含解析_第5頁
免費預覽已結(jié)束,剩余14頁可下載查看

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領

文檔簡介

2021-2022中考數(shù)學模擬試卷注意事項:1.答題前,考生先將自己的姓名、準考證號碼填寫清楚,將條形碼準確粘貼在條形碼區(qū)域內(nèi)。2.答題時請按要求用筆。3.請按照題號順序在答題卡各題目的答題區(qū)域內(nèi)作答,超出答題區(qū)域書寫的答案無效;在草稿紙、試卷上答題無效。4.作圖可先使用鉛筆畫出,確定后必須用黑色字跡的簽字筆描黑。5.保持卡面清潔,不要折暴、不要弄破、弄皺,不準使用涂改液、修正帶、刮紙刀。一、選擇題(共10小題,每小題3分,共30分)1.如圖,直線y=kx+b與x軸交于點(﹣4,0),則y>0時,x的取值范圍是()A.x>﹣4 B.x>0 C.x<﹣4 D.x<02.如圖是某蓄水池的橫斷面示意圖,分為深水池和淺水池,如果向這個蓄水池以固定的流量注水,下面能大致表示水的最大深度與時間之間的關系的圖象是()A. B. C. D.3.分式方程=1的解為()A.x=1 B.x=0 C.x=﹣ D.x=﹣14.2017年牡丹區(qū)政府工作報告指出:2012年以來牡丹區(qū)經(jīng)濟社會發(fā)展取得顯著成就,綜合實力明顯提升,地區(qū)生產(chǎn)總值由156.3億元增加到338億元,年均可比增長11.4%,338億用科學記數(shù)法表示為()A.3.38×107 B.33.8×109 C.0.338×109 D.3.38×10105.已知△ABC,D是AC上一點,尺規(guī)在AB上確定一點E,使△ADE∽△ABC,則符合要求的作圖痕跡是()A. B.C. D.6.如圖,△ABC中,∠ACB=90°,∠A=30°,AB=1.點P是斜邊AB上一點.過點P作PQ⊥AB,垂足為P,交邊AC(或邊CB)于點Q,設AP=x,△APQ的面積為y,則y與x之間的函數(shù)圖象大致為()A.B.C.D.7.已知點為某封閉圖形邊界上一定點,動點從點出發(fā),沿其邊界順時針勻速運動一周.設點運動的時間為,線段的長為.表示與的函數(shù)關系的圖象大致如右圖所示,則該封閉圖形可能是()A. B. C. D.8.一個不透明的袋中有四張完全相同的卡片,把它們分別標上數(shù)字1、2、3、1.隨機抽取一張卡片,然后放回,再隨機抽取一張卡片,則兩次抽取的卡片上數(shù)字之積為偶數(shù)的概率是()A. B. C. D.9.如圖,BD∥AC,BE平分∠ABD,交AC于點E,若∠A=40°,則∠1的度數(shù)為()A.80° B.70° C.60° D.40°10.的算術(shù)平方根是()A.9 B.±9 C.±3 D.3二、填空題(本大題共6個小題,每小題3分,共18分)11.九(5)班有男生27人,女生23人,班主任發(fā)放準考證時,任意抽取一張準考證,恰好是女生的準考證的概率是________________.12.如圖,AB是半圓O的直徑,E是半圓上一點,且OE⊥AB,點C為的中點,則∠A=__________°.13.二次函數(shù)的圖象與y軸的交點坐標是________.14.如圖,在Rt△ABC中,∠BAC=90°,AB=AC=4,D是BC的中點,點E在BA的延長線上,連接ED,若AE=2,則DE的長為_____.15.兩個等腰直角三角板如圖放置,點F為BC的中點,AG=1,BG=3,則CH的長為__________.16.如圖,點是反比例函數(shù)圖像上的兩點(點在點左側(cè)),過點作軸于點,交于點,延長交軸于點,已知,,則的值為__________.三、解答題(共8題,共72分)17.(8分)某校師生到距學校20千米的公路旁植樹,甲班師生騎自行車先走,45分鐘后,乙班師生乘汽車出發(fā),結(jié)果兩班師生同時到達,已知汽車的速度是自行車速度的2.5倍,求兩種車的速度各是多少?18.(8分)某商店銷售10臺A型和20臺B型電腦的利潤為4000元,銷售20臺A型和10臺B型電腦的利潤為3500元.求每臺A型電腦和B型電腦的銷售利潤;該商店計劃一次購進兩種型號的電腦共100臺,其中B型電腦的進貨量不超過A型電腦的2倍,設購進A型電腦x臺,這100臺電腦的銷售總利潤為y元.①求y關于x的函數(shù)關系式;②該商店購進A型、B型電腦各多少臺,才能使銷售總利潤最大?實際進貨時,廠家對A型電腦出廠價下調(diào)m(0<m<100)元,且限定商店最多購進A型電腦70臺,若商店保持同種電腦的售價不變,請你根據(jù)以上信息及(2)中條件,設計出使這100臺電腦銷售總利潤最大的進貨方案.19.(8分)如圖,△ABD是⊙O的內(nèi)接三角形,E是弦BD的中點,點C是⊙O外一點且∠DBC=∠A,連接OE延長與圓相交于點F,與BC相交于點C.(1)求證:BC是⊙O的切線;(2)若⊙O的半徑為6,BC=8,求弦BD的長.20.(8分)如圖,在△ABC中,∠C=90°,AD平分∠CAB,交CB于點D,過點D作DE⊥AB,于點E求證:△ACD≌△AED;若∠B=30°,CD=1,求BD的長.21.(8分)為落實“綠水青山就是金山銀山”的發(fā)展理念,某市政部門招標一工程隊負責在山腳下修建一座水庫的土方施工任務.該工程隊有兩種型號的挖掘機,已知3臺型和5臺型挖掘機同時施工一小時挖土165立方米;4臺型和7臺型挖掘機同時施工一小時挖土225立方米.每臺型挖掘機一小時的施工費用為300元,每臺型挖掘機一小時的施工費用為180元.分別求每臺型,型挖掘機一小時挖土多少立方米?若不同數(shù)量的型和型挖掘機共12臺同時施工4小時,至少完成1080立方米的挖土量,且總費用不超過12960元.問施工時有哪幾種調(diào)配方案,并指出哪種調(diào)配方案的施工費用最低,最低費用是多少元?22.(10分)已知:如圖所示,在中,,,求和的度數(shù).23.(12分)某商店準備購進甲、乙兩種商品.已知甲商品每件進價15元,售價20元;乙商品每件進價35元,售價45元.(1)若該商店同時購進甲、乙兩種商品共100件,恰好用去2700元,求購進甲、乙兩種商品各多少件?(2)若該商店準備用不超過3100元購進甲、乙兩種商品共100件,且這兩種商品全部售出后獲利不少于890元,問應該怎樣進貨,才能使總利潤最大,最大利潤是多少?(利潤=售價﹣進價)24.計算:+(﹣)﹣1+|1﹣|﹣4sin45°.

參考答案一、選擇題(共10小題,每小題3分,共30分)1、A【解析】試題分析:充分利用圖形,直接從圖上得出x的取值范圍.由圖可知,當y<1時,x<-4,故選C.考點:本題考查的是一次函數(shù)的圖象點評:解答本題的關鍵是掌握在x軸下方的部分y<1,在x軸上方的部分y>1.2、C【解析】

首先看圖可知,蓄水池的下部分比上部分的體積小,故h與t的關系變?yōu)橄瓤旌舐驹斀狻扛鶕?jù)題意和圖形的形狀,可知水的最大深度h與時間t之間的關系分為兩段,先快后慢。故選:C.【點睛】此題考查函數(shù)的圖象,解題關鍵在于觀察圖形3、C【解析】

首先找出分式的最簡公分母,進而去分母,再解分式方程即可.【詳解】解:去分母得:x2-x-1=(x+1)2,整理得:-3x-2=0,解得:x=-,檢驗:當x=-時,(x+1)2≠0,故x=-是原方程的根.故選C.【點睛】此題主要考查了解分式方程的解法,正確掌握解題方法是解題關鍵.4、D【解析】

根據(jù)科學記數(shù)法的定義可得到答案.【詳解】338億=33800000000=,故選D.【點睛】把一個大于10或者小于1的數(shù)表示為的形式,其中1≤|a|<10,這種記數(shù)法叫做科學記數(shù)法.5、A【解析】

以DA為邊、點D為頂點在△ABC內(nèi)部作一個角等于∠B,角的另一邊與AB的交點即為所求作的點.【詳解】如圖,點E即為所求作的點.故選:A.【點睛】本題主要考查作圖-相似變換,根據(jù)相似三角形的判定明確過點D作一角等于∠B或∠C,并熟練掌握做一個角等于已知角的作法式解題的關鍵.6、D【解析】解:當點Q在AC上時,∵∠A=30°,AP=x,∴PQ=xtan30°=33x,∴y=12×AP×PQ=12×x×33當點Q在BC上時,如下圖所示:∵AP=x,AB=1,∠A=30°,∴BP=1﹣x,∠B=60°,∴PQ=BP?tan60°=3(1﹣x),∴SΔAPQ=12AP?PQ=12點睛:本題考查動點問題的函數(shù)圖象,有一定難度,解題關鍵是注意點Q在BC上這種情況.7、A【解析】

解:分析題中所給函數(shù)圖像,段,隨的增大而增大,長度與點的運動時間成正比.段,逐漸減小,到達最小值時又逐漸增大,排除、選項,段,逐漸減小直至為,排除選項.故選.【點睛】本題考查了動點問題的函數(shù)圖象,函數(shù)圖象是典型的數(shù)形結(jié)合,圖象應用信息廣泛,通過看圖獲取信息,不僅可以解決生活中的實際問題,還可以提高分析問題、解決問題的能力.用圖象解決問題時,要理清圖象的含義即會識圖.8、C【解析】【分析】畫樹狀圖展示所有16種等可能的結(jié)果數(shù),再找出兩次抽取的卡片上數(shù)字之積為偶數(shù)的結(jié)果數(shù),然后根據(jù)概率公式求解.【詳解】畫樹狀圖為:共有16種等可能的結(jié)果數(shù),其中兩次抽取的卡片上數(shù)字之積為偶數(shù)的結(jié)果數(shù)為12,所以兩次抽取的卡片上數(shù)字之積為偶數(shù)的概率=,故選C.【點睛】本題考查了列表法與樹狀圖法求概率,用到的知識點為:概率=所求情況數(shù)與總情況數(shù)之比.9、B【解析】

根據(jù)平行線的性質(zhì)得到根據(jù)BE平分∠ABD,即可求出∠1的度數(shù).【詳解】解:∵BD∥AC,∴∵BE平分∠ABD,∴故選B.【點睛】本題考查角平分線的性質(zhì)和平行線的性質(zhì),熟記它們的性質(zhì)是解題的關鍵.10、D【解析】

根據(jù)算術(shù)平方根的定義求解.【詳解】∵=9,

又∵(±1)2=9,

∴9的平方根是±1,

∴9的算術(shù)平方根是1.

即的算術(shù)平方根是1.

故選:D.【點睛】考核知識點:算術(shù)平方根.理解定義是關鍵.二、填空題(本大題共6個小題,每小題3分,共18分)11、23【解析】

用女生人數(shù)除以總?cè)藬?shù)即可.【詳解】由題意得,恰好是女生的準考證的概率是2350故答案為:2350【點睛】此題考查了概率公式,如果一個事件有n種可能,而且這些事件的可能性相同,其中事件A出現(xiàn)m種結(jié)果,那么事件A的概率P(A)=mn12、22.5【解析】

連接半徑OC,先根據(jù)點C為的中點,得∠BOC=45°,再由同圓的半徑相等和等腰三角形的性質(zhì)得:∠A=∠ACO=×45°,可得結(jié)論.【詳解】連接OC,

∵OE⊥AB,

∴∠EOB=90°,

∵點C為的中點,

∴∠BOC=45°,

∵OA=OC,

∴∠A=∠ACO=×45°=22.5°,

故答案為:22.5°.【點睛】本題考查了圓周角定理與等腰三角形的性質(zhì).解題的關鍵是注意掌握數(shù)形結(jié)合思想的應用.13、【解析】

求出自變量x為1時的函數(shù)值即可得到二次函數(shù)的圖象與y軸的交點坐標.【詳解】把代入得:,∴該二次函數(shù)的圖象與y軸的交點坐標為,故答案為.【點睛】本題考查了二次函數(shù)圖象上點的坐標特征,在y軸上的點的橫坐標為1.14、2【解析】

過點E作EF⊥BC于F,根據(jù)已知條件得到△BEF是等腰直角三角形,求得BE=AB+AE=6,根據(jù)勾股定理得到BF=EF=3,求得DF=BF?BD=,根據(jù)勾股定理即可得到結(jié)論.【詳解】解:過點E作EF⊥BC于F,∴∠BFE=90°,∵∠BAC=90°,AB=AC=4,∴∠B=∠C=45°,BC=4,∴△BEF是等腰直角三角形,∵BE=AB+AE=6,∴BF=EF=3,∵D是BC的中點,∴BD=2,∴DF=BF?BD,∴DE===2.故答案為2.【點睛】本題考查了等腰直角三角形的性質(zhì),勾股定理,正確的作出輔助線構(gòu)造等腰直角三角形是解題的關鍵.15、【解析】

依據(jù)∠B=∠C=45°,∠DFE=45°,即可得出∠BGF=∠CFH,進而得到△BFG∽△CHF,依據(jù)相似三角形的性質(zhì),即可得到=,即=,即可得到CH=.【詳解】解:∵AG=1,BG=3,∴AB=4,∵△ABC是等腰直角三角形,∴BC=4,∠B=∠C=45°,∵F是BC的中點,∴BF=CF=2,∵△DEF是等腰直角三角形,∴∠DFE=45°,∴∠CFH=180°﹣∠BFG﹣45°=135°﹣∠BFG,又∵△BFG中,∠BGF=180°﹣∠B﹣∠BFG=135°﹣∠BFG,∴∠BGF=∠CFH,∴△BFG∽△CHF,∴=,即=,∴CH=,故答案為.【點睛】本題主要考查了相似三角形的判定與性質(zhì),在判定兩個三角形相似時,應注意利用圖形中已有的公共角、公共邊等隱含條件,以充分發(fā)揮基本圖形的作用.16、【解析】

過點B作BF⊥OC于點F,易證S△OAE=S四邊形DEBF=,S△OAB=S四邊形DABF,因為,所以,,又因為AD∥BF,所以S△BCF∽S△ACD,可得BF:AD=2:5,因為S△OAD=S△OBF,所以×OD×AD=×OF×BF,即BF:AD=2:5=OD:OF,易證:S△OED∽S△OBF,S△OED:S△OBF=4:25,S△OED:S四邊形EDFB=4:21,所以S△OED=,S△OBF=S△OED+S四邊形EDFB=+=,即可得解:k=2S△OBF=.【詳解】解:過點B作BF⊥OC于點F,由反比例函數(shù)的比例系數(shù)|k|的意義可知:S△OAD=S△OBF,∴S△OAD-S△OED=S△OBF一S△OED,即S△OAE=S四邊形DEBF=,S△OAB=S四邊形DABF,∵,∴,,∵AD∥BF∴S△BCF∽S△ACD,又∵,∴BF:AD=2:5,∵S△OAD=S△OBF,∴×OD×AD=×OF×BF∴BF:AD=2:5=OD:OF易證:S△OED∽S△OBF,∴S△OED:S△OBF=4:25,S△OED:S四邊形EDFB=4:21∵S四邊形EDFB=,∴S△OED=,S△OBF=S△OED+S四邊形EDFB=+=,∴k=2S△OBF=.故答案為.【點睛】本題考查反比例函數(shù)的比例系數(shù)|k|的幾何意義,解題關鍵是熟練運用相似三角形的判定定理和性質(zhì)定理.三、解答題(共8題,共72分)17、自行車速度為16千米/小時,汽車速度為40千米/小時.【解析】

設自行車速度為x千米/小時,則汽車速度為2.5x千米/小時,根據(jù)甲班師生騎自行車先走,45分鐘后,乙班師生乘汽車出發(fā),結(jié)果同時到達,即可列方程求解.【詳解】設自行車速度為x千米/小時,則汽車速度為2.5x千米/小時,由題意得,解得x=16,經(jīng)檢驗x=16適合題意,2.5x=40,答:自行車速度為16千米/小時,汽車速度為40千米/小時.18、(1)每臺A型100元,每臺B150元;(2)34臺A型和66臺B型;(3)70臺A型電腦和30臺B型電腦的銷售利潤最大【解析】

(1)設每臺A型電腦銷售利潤為a元,每臺B型電腦的銷售利潤為b元;根據(jù)題意列出方程組求解,(2)①據(jù)題意得,y=﹣50x+15000,②利用不等式求出x的范圍,又因為y=﹣50x+15000是減函數(shù),所以x取34,y取最大值,(3)據(jù)題意得,y=(100+m)x﹣150(100﹣x),即y=(m﹣50)x+15000,分三種情況討論,①當0<m<50時,y隨x的增大而減小,②m=50時,m﹣50=0,y=15000,③當50<m<100時,m﹣50>0,y隨x的增大而增大,分別進行求解.【詳解】解:(1)設每臺A型電腦銷售利潤為a元,每臺B型電腦的銷售利潤為b元;根據(jù)題意得解得答:每臺A型電腦銷售利潤為100元,每臺B型電腦的銷售利潤為150元.(2)①據(jù)題意得,y=100x+150(100﹣x),即y=﹣50x+15000,②據(jù)題意得,100﹣x≤2x,解得x≥33,∵y=﹣50x+15000,﹣50<0,∴y隨x的增大而減小,∵x為正整數(shù),∴當x=34時,y取最大值,則100﹣x=66,即商店購進34臺A型電腦和66臺B型電腦的銷售利潤最大.(3)據(jù)題意得,y=(100+m)x+150(100﹣x),即y=(m﹣50)x+15000,33≤x≤70①當0<m<50時,y隨x的增大而減小,∴當x=34時,y取最大值,即商店購進34臺A型電腦和66臺B型電腦的銷售利潤最大.②m=50時,m﹣50=0,y=15000,即商店購進A型電腦數(shù)量滿足33≤x≤70的整數(shù)時,均獲得最大利潤;③當50<m<100時,m﹣50>0,y隨x的增大而增大,∴當x=70時,y取得最大值.即商店購進70臺A型電腦和30臺B型電腦的銷售利潤最大.【點睛】本題主要考查了一次函數(shù)的應用,二元一次方程組及一元一次不等式的應用,解題的關鍵是根據(jù)一次函數(shù)x值的增大而確定y值的增減情況.19、(1)詳見解析;(2)BD=9.6.【解析】試題分析:(1)連接OB,由垂徑定理可得BE=DE,OE⊥BD,,再由圓周角定理可得,從而得到∠OBE+∠DBC=90°,即,命題得證.(2)由勾股定理求出OC,再由△OBC的面積求出BE,即可得出弦BD的長.試題解析:(1)證明:如下圖所示,連接OB.∵E是弦BD的中點,∴BE=DE,OE⊥BD,,∴∠BOE=∠A,∠OBE+∠BOE=90°.∵∠DBC=∠A,∴∠BOE=∠DBC,∴∠OBE+∠DBC=90°,∴∠OBC=90°,即BC⊥OB,∴BC是⊙O的切線.(2)解:∵OB=6,BC=8,BC⊥OB,∴,∵,∴,∴.點睛:本題主要考查圓中的計算問題,解題的關鍵在于清楚角度的轉(zhuǎn)換方式和弦長的計算方法.20、(1)見解析(2)BD=2【解析】解:(1)證明:∵AD平分∠CAB,DE⊥AB,∠C=90°,∴CD=ED,∠DEA=∠C=90°.∵在Rt△ACD和Rt△AED中,,∴Rt△ACD≌Rt△AED(HL).(2)∵Rt△ACD≌Rt△AED,CD=1,∴DC=DE=1.∵DE⊥AB,∴∠DEB=90°.∵∠B=30°,∴BD=2DE=2.(1)根據(jù)角平分線性質(zhì)求出CD=DE,根據(jù)HL定理求出另三角形全等即可.(2)求出∠DEB=90°,DE=1,根據(jù)含30度角的直角三角形性質(zhì)求出即可.21、(1)每臺型挖掘機一小時挖土30立方米,每臺型挖據(jù)機一小時挖土15立方米;(2)共有三種調(diào)配方案.方案一:型挖據(jù)機7臺,型挖掘機5臺;方案二:型挖掘機8臺,型挖掘機4臺;方案三:型挖掘機9臺,型挖掘機3臺.當A型挖掘機7臺,型挖掘機5臺的施工費用最低,最低費用為12000元.【解析】分析:(1)根據(jù)題意列出方程組即可;(2)利用總費用不超過12960元求出方案數(shù)量,再利用一次函數(shù)增減性求出最低費用.詳解:(1)設每臺型,型挖掘機一小時分別挖土立方米和立方米,根據(jù)題意,得解得所以,每臺型挖掘機一小時挖土30立方米,每臺型挖據(jù)機一小時挖土15立方米.(2)設型挖掘機有臺,總費用為元,則型挖據(jù)機有臺.根據(jù)題意,得,因為,解得,又因為,解得,所以.所以,共有三種調(diào)配方案.方案一:當時,,即型挖據(jù)機7臺,型挖掘機5臺;方案二:當時,,即型挖掘機8臺,型挖掘機4臺;方案三:當時,,即型挖掘機9臺,型挖掘機3臺.,由一次函數(shù)的性質(zhì)可知,隨的減小而減小,當時,,此時型挖掘機7臺,型挖掘機5臺的施工費用最低,最低費用為12000元.點睛:本題考查了二元一次方程組和一次函數(shù)增減性,解答時先根據(jù)題意確定自變量取值范圍,再應用一次函數(shù)性質(zhì)解答問題.22、,.【解析】

根據(jù)等腰三角形的性質(zhì)即可求出∠B,再根據(jù)

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
  • 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論