




版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領
文檔簡介
2021-2022中考數(shù)學模擬試卷注意事項:1.答題前,考生先將自己的姓名、準考證號填寫清楚,將條形碼準確粘貼在考生信息條形碼粘貼區(qū)。2.選擇題必須使用2B鉛筆填涂;非選擇題必須使用0.5毫米黑色字跡的簽字筆書寫,字體工整、筆跡清楚。3.請按照題號順序在各題目的答題區(qū)域內作答,超出答題區(qū)域書寫的答案無效;在草稿紙、試題卷上答題無效。4.保持卡面清潔,不要折疊,不要弄破、弄皺,不準使用涂改液、修正帶、刮紙刀。一、選擇題(本大題共12個小題,每小題4分,共48分.在每小題給出的四個選項中,只有一項是符合題目要求的.)1.如圖是某個幾何體的三視圖,該幾何體是()A.三棱柱 B.三棱錐 C.圓柱 D.圓錐2.不等式組的解集在數(shù)軸上表示正確的是()A. B. C. D.3.如圖,在中,點D為AC邊上一點,則CD的長為()A.1 B. C.2 D.4.黃河是中華民族的象征,被譽為母親河,黃河壺口瀑布位于我省吉縣城西45千米處,是黃河上最具氣勢的自然景觀.其落差約30米,年平均流量1010立方米/秒.若以小時作時間單位,則其年平均流量可用科學記數(shù)法表示為()A.6.06×104立方米/時 B.3.136×106立方米/時C.3.636×106立方米/時 D.36.36×105立方米/時5.三角形兩邊的長是3和4,第三邊的長是方程x2-12x+35=0的根,則該三角形的周長為()A.14 B.12 C.12或14 D.以上都不對6.如圖,雙曲線y=(k>0)經(jīng)過矩形OABC的邊BC的中點E,交AB于點D,若四邊形ODBC的面積為3,則k的值為()A.1 B.2 C.3 D.67.如圖,有一些點組成形如四邊形的圖案,每條“邊”(包括頂點)有n(n>1)個點.當n=2018時,這個圖形總的點數(shù)S為()A.8064 B.8067 C.8068 D.80728.據(jù)統(tǒng)計,某住宅樓30戶居民五月份最后一周每天實行垃圾分類的戶數(shù)依次是:27,30,29,25,26,28,29,那么這組數(shù)據(jù)的中位數(shù)和眾數(shù)分別是()A.25和30 B.25和29 C.28和30 D.28和299.如果y=++3,那么yx的算術平方根是()A.2 B.3 C.9 D.±310.計算的值為()A. B.-4 C. D.-211.下列事件中是必然事件的是()A.早晨的太陽一定從東方升起B(yǎng).中秋節(jié)的晚上一定能看到月亮C.打開電視機,正在播少兒節(jié)目D.小紅今年14歲,她一定是初中學生12.某種品牌手機經(jīng)過二、三月份再次降價,每部售價由1000元降到810元,則平均每月降價的百分率為()A.20% B.11% C.10% D.9.5%二、填空題:(本大題共6個小題,每小題4分,共24分.)13.如圖,在菱形ABCD中,AB=BD.點E、F分別在AB、AD上,且AE=DF.連接BF與DE相交于點G,連接CG與BD相交于點H.下列結論:①△AED≌△DFB;②S四邊形BCDG=CG2;③若AF=2DF,則BG=6GF.其中正確的結論有_____.(填序號)14.如圖,在Rt△ABC中,∠C=90°,AC=8,BC=1.在邊AB上取一點O,使BO=BC,以點O為旋轉中心,把△ABC逆時針旋轉90°,得到△A′B′C′(點A、B、C的對應點分別是點A′、B′、C′、),那么△ABC與△A′B′C′的重疊部分的面積是_________.15.如圖,在矩形ABCD中,點E是邊CD的中點,將△ADE沿AE折疊后得到△AFE,且點F在矩形ABCD內部.將AF延長交邊BC于點G.若,則(用含k的代數(shù)式表示).16.已知點P(2,3)在一次函數(shù)y=2x-m的圖象上,則m=_______.17.64的立方根是_______.18.函數(shù)的定義域是__________.三、解答題:(本大題共9個小題,共78分,解答應寫出文字說明、證明過程或演算步驟.19.(6分)如圖,已知⊙O經(jīng)過△ABC的頂點A、B,交邊BC于點D,點A恰為的中點,且BD=8,AC=9,sinC=,求⊙O的半徑.20.(6分)如圖,已知點A,C在EF上,AD∥BC,DE∥BF,AE=CF.(1)求證:四邊形ABCD是平行四邊形;(2)直接寫出圖中所有相等的線段(AE=CF除外).21.(6分)如圖,點P是菱形ABCD的對角線BD上一點,連接CP并延長,交AD于E,交BA的延長線點F.問:圖中△APD與哪個三角形全等?并說明理由;求證:△APE∽△FPA;猜想:線段PC,PE,PF之間存在什么關系?并說明理由.22.(8分)如圖,在正方形ABCD的外部,分別以CD,AD為底作等腰Rt△CDE、等腰Rt△DAF,連接AE、CF,交點為O.(1)求證:△CDF≌△ADE;(2)若AF=1,求四邊形ABCO的周長.23.(8分)如圖,一次函數(shù)y=kx+b的圖象分別與反比例函數(shù)y=的圖象在第一象限交于點A(4,3),與y軸的負半軸交于點B,且OA=OB.(1)求函數(shù)y=kx+b和y=的表達式;(2)已知點C(0,8),試在該一次函數(shù)圖象上確定一點M,使得MB=MC,求此時點M的坐標.24.(10分)已知,如圖,直線MN交⊙O于A,B兩點,AC是直徑,AD平分∠CAM交⊙O于D,過D作DE⊥MN于E.求證:DE是⊙O的切線;若DE=6cm,AE=3cm,求⊙O的半徑.25.(10分)如圖,已知,請用尺規(guī)過點作一條直線,使其將分成面積比為兩部分.(保留作圖痕跡,不寫作法)26.(12分)如圖1,在正方形ABCD中,E是AB上一點,F(xiàn)是AD延長線上一點,且DF=BE,求證:CE=CF;如圖2,在正方形ABCD中,E是AB上一點,G是AD上一點,如果∠GCE=45°,請你利用(1)的結論證明:GE=BE+GD;運用(1)(2)解答中所積累的經(jīng)驗和知識,完成下題:如圖3,在直角梯形ABCD中,AD∥BC(BC>AD),∠B=90°,AB=BC,E是AB上一點,且∠DCE=45°,BE=4,DE=10,求直角梯形ABCD的面積.27.(12分)關于的一元二次方程有實數(shù)根.求的取值范圍;如果是符合條件的最大整數(shù),且一元二次方程與方程有一個相同的根,求此時的值.
參考答案一、選擇題(本大題共12個小題,每小題4分,共48分.在每小題給出的四個選項中,只有一項是符合題目要求的.)1、A【解析】試題分析:觀察可得,主視圖是三角形,俯視圖是兩個矩形,左視圖是矩形,所以這個幾何體是三棱柱,故選A.考點:由三視圖判定幾何體.2、A【解析】分析:分別求出各不等式的解集,再求出其公共解集并在數(shù)軸上表示出來,選出符合條件的選項即可.詳解:由①得,x≤1,由②得,x>-1,故此不等式組的解集為:-1<x≤1.在數(shù)軸上表示為:故選A.點睛:本題考查的是在數(shù)軸上表示一元一此不等式組的解集,把每個不等式的解集在數(shù)軸上表示出來(>,≥向右畫;<,≤向左畫),數(shù)軸上的點把數(shù)軸分成若干段,如果數(shù)軸的某一段上面表示解集的線的條數(shù)與不等式的個數(shù)一樣,那么這段就是不等式組的解集.有幾個就要幾個.在表示解集時“≥”,“≤”要用實心圓點表示;“<”,“>”要用空心圓點表示.3、C【解析】
根據(jù)∠DBC=∠A,∠C=∠C,判定△BCD∽△ACB,根據(jù)相似三角形對應邊的比相等得到代入求值即可.【詳解】∵∠DBC=∠A,∠C=∠C,∴△BCD∽△ACB,∴∴∴CD=2.故選:C.【點睛】主要考查相似三角形的判定與性質,掌握相似三角形的判定定理是解題的關鍵.4、C【解析】
科學記數(shù)法的表示形式為a×10n的形式,其中1≤|a|<10,n為整數(shù).確定n的值時,要看把原數(shù)變成a時,小數(shù)點移動了多少位,n的絕對值與小數(shù)點移動的位數(shù)相同.當原數(shù)絕對值>1時,n是正數(shù);當原數(shù)的絕對值<1時,n是負數(shù).【詳解】1010×360×24=3.636×106立方米/時,故選C.【點睛】此題考查科學記數(shù)法的表示方法.科學記數(shù)法的表示形式為a×10n的形式,其中1≤|a|<10,n為整數(shù),表示時關鍵要正確確定a的值以及n的值.5、B【解析】
解方程得:x=5或x=1.當x=1時,3+4=1,不能組成三角形;當x=5時,3+4>5,三邊能夠組成三角形.∴該三角形的周長為3+4+5=12,故選B.6、B【解析】
先根據(jù)矩形的特點設出B、C的坐標,根據(jù)矩形的面積求出B點橫縱坐標的積,由D為AB的中點求出D點的橫縱坐標,再由待定系數(shù)法即可求出反比例函數(shù)的解析式.【詳解】解:如圖:連接OE,設此反比例函數(shù)的解析式為y=(k>0),C(c,0),則B(c,b),E(c,),設D(x,y),∵D和E都在反比例函數(shù)圖象上,∴xy=k,即,∵四邊形ODBC的面積為3,∴∴∴bc=4∴∵k>0∴解得k=2,故答案為:B.【點睛】本題考查了反比例函數(shù)中比例系數(shù)k的幾何意義,涉及到矩形的性質及用待定系數(shù)法求反比例函數(shù)的解析式,難度適中.7、C【解析】分析:本題重點注意各個頂點同時在兩條邊上,計算點的個數(shù)時,不要把頂點重復計算了.詳解:此題中要計算點的個數(shù),可以類似周長的計算方法進行,但應注意各個頂點重復了一次.如當n=2時,共有S2=4×2﹣4=4;當n=3時,共有S3=4×3﹣4,…,依此類推,即Sn=4n﹣4,當n=2018時,S2018=4×2018﹣4=1.故選C.點睛:本題考查了圖形的變化類問題,關鍵是通過歸納與總結,得到其中的規(guī)律.8、D【解析】【分析】根據(jù)中位數(shù)和眾數(shù)的定義進行求解即可得答案.【詳解】對這組數(shù)據(jù)重新排列順序得,25,26,27,28,29,29,30,處于最中間是數(shù)是28,∴這組數(shù)據(jù)的中位數(shù)是28,在這組數(shù)據(jù)中,29出現(xiàn)的次數(shù)最多,∴這組數(shù)據(jù)的眾數(shù)是29,故選D.【點睛】本題考查了中位數(shù)和眾數(shù)的概念,熟練掌握眾數(shù)和中位數(shù)的概念是解題的關鍵.一組數(shù)據(jù)中出現(xiàn)次數(shù)最多的數(shù)據(jù)叫做眾數(shù),一組數(shù)據(jù)按從小到大(或從大到小)排序后,位于最中間的數(shù)(或中間兩數(shù)的平均數(shù))是這組數(shù)據(jù)的中位數(shù).9、B【解析】解:由題意得:x﹣2≥0,2﹣x≥0,解得:x=2,∴y=1,則yx=9,9的算術平方根是1.故選B.10、C【解析】
根據(jù)二次根式的運算法則即可求出答案.【詳解】原式=-3=-2,故選C.【點睛】本題考查二次根式的運算,解題的關鍵是熟練運用二次根式的運算法則,本題屬于基礎題型.11、A【解析】
必然事件就是一定發(fā)生的事件,即發(fā)生的概率是1的事件,依據(jù)定義即可求解.【詳解】解:B、C、D選項為不確定事件,即隨機事件.故錯誤;
一定發(fā)生的事件只有第一個答案,早晨的太陽一定從東方升起.故選A.【點睛】該題考查的是對必然事件的概念的理解;必然事件就是一定發(fā)生的事件.12、C【解析】
設二,三月份平均每月降價的百分率為,則二月份為,三月份為,然后再依據(jù)第三個月售價為1,列出方程求解即可.【詳解】解:設二,三月份平均每月降價的百分率為.根據(jù)題意,得=1.解得,(不合題意,舍去).答:二,三月份平均每月降價的百分率為10%【點睛】本題主要考查一元二次方程的應用,關于降價百分比的問題:若原數(shù)是a,每次降價的百分率為a,則第一次降價后為a(1-x);第二次降價后后為a(1-x)2,即:原數(shù)x(1-降價的百分率)2=后兩次數(shù).二、填空題:(本大題共6個小題,每小題4分,共24分.)13、①②③【解析】
(1)由已知條件易得∠A=∠BDF=60°,結合BD=AB=AD,AE=DF,即可證得△AED≌△DFB,從而說明結論①正確;(2)由已知條件可證點B、C、D、G四點共圓,從而可得∠CDN=∠CBM,如圖,過點C作CM⊥BF于點M,過點C作CN⊥ED于點N,結合CB=CD即可證得△CBM≌△CDN,由此可得S四邊形BCDG=S四邊形CMGN=2S△CGN,在Rt△CGN中,由∠CGN=∠DBC=60°,∠CNG=90°可得GN=CG,CN=CG,由此即可求得S△CGN=CG2,從而可得結論②是正確的;(3)過點F作FK∥AB交DE于點K,由此可得△DFK∽△DAE,△GFK∽△GBE,結合AF=2DF和相似三角形的性質即可證得結論④成立.【詳解】(1)∵四邊形ABCD是菱形,BD=AB,∴AB=BD=BC=DC=DA,∴△ABD和△CBD都是等邊三角形,∴∠A=∠BDF=60°,又∵AE=DF,∴△AED≌△DFB,即結論①正確;(2)∵△AED≌△DFB,△ABD和△DBC是等邊三角形,∴∠ADE=∠DBF,∠DBC=∠CDB=∠BDA=60°,∴∠GBC+∠CDG=∠DBF+∠DBC+∠CDB+∠GDB=∠DBC+∠CDB+∠GDB+∠ADE=∠DBC+∠CDB+∠BDA=180°,∴點B、C、D、G四點共圓,∴∠CDN=∠CBM,如下圖,過點C作CM⊥BF于點M,過點C作CN⊥ED于點N,∴∠CDN=∠CBM=90°,又∵CB=CD,∴△CBM≌△CDN,∴S四邊形BCDG=S四邊形CMGN=2S△CGN,∵在Rt△CGN中,∠CGN=∠DBC=60°,∠CNG=90°∴GN=CG,CN=CG,∴S△CGN=CG2,∴S四邊形BCDG=2S△CGN,=CG2,即結論②是正確的;(3)如下圖,過點F作FK∥AB交DE于點K,∴△DFK∽△DAE,△GFK∽△GBE,∴,,∵AF=2DF,∴,∵AB=AD,AE=DF,AF=2DF,∴BE=2AE,∴,∴BG=6FG,即結論③成立.綜上所述,本題中正確的結論是:故答案為①②③點睛:本題是一道涉及菱形、相似三角形、全等三角形和含30°角的直角三角形等多種幾何圖形的判定與性質的題,題目難度較大,熟悉所涉及圖形的性質和判定方法,作出如圖所示的輔助線是正確解答本題的關鍵.14、【解析】
先求得OD,AE,DE的值,再利用S四邊形ODEF=S△AOF-S△ADE即可.【詳解】如圖,OA’=OA=4,則OD=OA’=3,OD=3∴AD=1,可得DE=,AE=∴S四邊形ODEF=S△AOF-S△ADE=×3×4-××=.故答案為.【點睛】本題考查的知識點是三角形的旋轉,解題的關鍵是熟練的掌握三角形的旋轉.15、?!窘馕觥吭囶}分析:如圖,連接EG,∵,∴設,則。∵點E是邊CD的中點,∴。∵△ADE沿AE折疊后得到△AFE,∴。易證△EFG≌△ECG(HL),∴?!?。∴在Rt△ABG中,由勾股定理得:,即?!唷!啵ㄖ蝗≌担?。∴。16、1【解析】
根據(jù)待定系數(shù)法求得一次函數(shù)的解析式,解答即可.【詳解】解:∵一次函數(shù)y=2x-m的圖象經(jīng)過點P(2,3),∴3=4-m,解得m=1,故答案為:1.【點睛】此題主要考查了一次函數(shù)圖象上點的坐標特征,關鍵是根據(jù)待定系數(shù)法求得一次函數(shù)的解析式.17、4.【解析】
根據(jù)立方根的定義即可求解.【詳解】∵43=64,∴64的立方根是4故答案為4【點睛】此題主要考查立方根的定義,解題的關鍵是熟知立方根的定義.18、【解析】
根據(jù)二次根式的性質,被開方數(shù)大于等于0,可知:x-1≥0,解得x的范圍.【詳解】根據(jù)題意得:x-1≥0,解得:x≥1.故答案為:.【點睛】此題考查二次根式,解題關鍵在于掌握二次根式有意義的條件.三、解答題:(本大題共9個小題,共78分,解答應寫出文字說明、證明過程或演算步驟.19、⊙O的半徑為.【解析】
如圖,連接OA.交BC于H.首先證明OA⊥BC,在Rt△ACH中,求出AH,設⊙O的半徑為r,在Rt△BOH中,根據(jù)BH2+OH2=OB2,構建方程即可解決問題?!驹斀狻拷猓喝鐖D,連接OA.交BC于H.∵點A為的中點,∴OA⊥BD,BH=DH=4,∴∠AHC=∠BHO=90°,∵,AC=9,∴AH=3,設⊙O的半徑為r,在Rt△BOH中,∵BH2+OH2=OB2,∴42+(r﹣3)2=r2,∴r=,∴⊙O的半徑為.【點睛】本題考查圓心角、弧、弦的關系、垂徑定理、勾股定理、銳角三角函數(shù)等知識,解題的關鍵是學會添加常用輔助線,構造直角三角形解決問題.20、(1)見解析;(2)AD=BC,EC=AF,ED=BF,AB=DC.【解析】整體分析:(1)用ASA證明△ADE≌△CBF,得到AD=BC,根據(jù)一組對邊平行且相等的四邊形是平行四邊形證明;(2)根據(jù)△ADE≌△CBF,和平行四邊形ABCD的性質及線段的和差關系找相等的線段.解:(1)證明:∵AD∥BC,DE∥BF,∴∠E=∠F,∠DAC=∠BCA,∴∠DAE=∠BCF.在△ADE和△CBF中,,∴△ADE≌△CBF,∴AD=BC,∴四邊形ABCD是平行四邊形.(2)AD=BC,EC=AF,ED=BF,AB=DC.理由如下:∵△ADE≌△CBF,∴AD=BC,ED=BF.∵AE=CF,∴EC=AF.∵四邊形ABCD是平行四邊形,∴AB=DC.21、(1)△CPD.理由參見解析;(2)證明參見解析;(3)PC2=PE?PF.理由參見解析.【解析】
(1)根據(jù)菱形的性質,利用SAS來判定兩三角形全等;(2)根據(jù)第一問的全等三角形結論及已知,利用兩組角相等則兩三角形相似來判定即可;(3)根據(jù)相似三角形的對應邊成比例及全等三角形的對應邊相等即可得到結論.【詳解】解:(1)△APD≌△CPD.理由:∵四邊形ABCD是菱形,∴AD=CD,∠ADP=∠CDP.又∵PD=PD,∴△APD≌△CPD(SAS).(2)∵△APD≌△CPD,∴∠DAP=∠DCP,∵CD∥AB,∴∠DCF=∠DAP=∠CFB,又∵∠FPA=∠FPA,∴△APE∽△FPA(兩組角相等則兩三角形相似).(3)猜想:PC2=PE?PF.理由:∵△APE∽△FPA,∴即PA2=PE?PF.∵△APD≌△CPD,∴PA=PC.∴PC2=PE?PF.【點睛】本題考查1.相似三角形的判定與性質;2.全等三角形的判定;3.菱形的性質,綜合性較強.22、(1)詳見解析;(2)【解析】
(1)根據(jù)正方形的性質和等腰直角三角形的性質以及全等三角形的判定得出△CDF≌△ADE;(2)連接AC,利用正方形的性質和四邊形周長解答即可.【詳解】(1)證明:∵四邊形ABCD是正方形∴CD=AD,∠ADC=90°,∵△CDE和△DAF都是等腰直角三角形,∴FD=AD,DE=CD,∠ADF=∠CDE=45°,∴∠CDF=∠ADE=135°,F(xiàn)D=DE,∴△CDF≌△ADE(SAS);(2)如圖,連接AC.∵四邊形ABCD是正方形,∴∠ACD=∠DAC=45°,∵△CDF≌△ADE,∴∠DCF=∠DAE,∴∠OAC=∠OCA,∴OA=OC,∵∠DCE=45°,∴∠ACE=90°,∴∠OCE=∠OEC,∴OC=OE,∵AF=FD=1,∴AD=AB=BC=,∴AC=2,∴OA+OC=OA+OE=AE=,∴四邊形ABCO的周長AB+BC+OA+OC=.【點睛】本題考查了正方形的性質,全等三角形的判定與性質,等腰直角三角形的性質,難點在于(2)作輔助線構造出全等三角形.23、(1),y=2x﹣1;(2).【解析】
(1)利用待定系數(shù)法即可解答;
(2)作MD⊥y軸,交y軸于點D,設點M的坐標為(x,2x-1),根據(jù)MB=MC,得到CD=BD,再列方程可求得x的值,得到點M的坐標【詳解】解:(1)把點A(4,3)代入函數(shù)得:a=3×4=12,∴.∵A(4,3)∴OA=1,∵OA=OB,∴OB=1,∴點B的坐標為(0,﹣1)把B(0,﹣1),A(4,3)代入y=kx+b得:∴y=2x﹣1.(2)作MD⊥y軸于點D.∵點M在一次函數(shù)y=2x﹣1上,∴設點M的坐標為(x,2x﹣1)則點D(0,2x-1)∵MB=MC,∴CD=BD∴8-(2x-1)=2x-1+1解得:x=∴2x﹣1=,∴點M的坐標為.【點睛】本題考查了一次函數(shù)與反比例函數(shù)的交點,解決本題的關鍵是利用待定系數(shù)法求解析式.24、解:(1)證明見解析;(2)⊙O的半徑是7.5cm.【解析】
(1)連接OD,根據(jù)平行線的判斷方法與性質可得∠ODE=∠DEM=90°,且D在⊙O上,故DE是⊙O的切線.(2)由直角三角形的特殊性質,可得AD的長,又有△ACD∽△ADE.根據(jù)相似三角形的性質列出比例式,代入數(shù)據(jù)即可求得圓的半徑.【詳解】(1)證明:連接OD.∵OA=OD,∴∠OAD=∠ODA.∵∠OAD=∠DAE,∴∠ODA=∠DAE.∴DO∥MN.∵DE⊥MN,∴∠ODE=∠DEM=90°.即OD⊥DE.∵D在⊙O上,OD為⊙O的半徑,∴DE是⊙O的切線.(2)解:∵∠AED=90°,DE=6,AE=3,∴.連接CD.∵AC是⊙O的直徑,∴∠ADC=∠AED=90°.∵∠CAD=∠DAE,∴△ACD∽△ADE.∴.∴.則AC=15(cm).∴⊙O的半徑是7.5cm.考點:切線的判定;平行線的判定與性質;圓周角定理;相似三角形的判定與性質.25、詳見解析【解析】
先作出AB的垂直平分線,而AB的垂直平分線交AB于D,再作出AD的垂直平分線,而AD的垂直平分線交AD于E,即可得到答案.【詳解】如圖作出AB的垂直平分線,而AB的垂直平分線交AB于D,再作出AD的垂直平分線,而AD的垂直平分線交AD于E,故AE=AD,AD=BD,故AE=AB,而BE=AB,而△AEC與△CEB在AB邊上的高相同,所以△CEB的面積是△AEC的面積的3倍,即S△AEC∶S△CEB=1∶3.【點睛】本題主要考查了三角形的基本概念和尺規(guī)作圖
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經(jīng)權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
- 6. 下載文件中如有侵權或不適當內容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 危險勞動合同范本
- 前期物業(yè)收費合同范本
- 呼叫中心服務員-高級工模擬題與參考答案
- 辦福利購銷合同范本
- 企業(yè)長期維修合同范本
- 保險公司對外承包合同范本
- 業(yè)務員銷售個人工作計劃
- 叉車購車合同范本
- 山東省菏澤市2025年高三一??荚囁枷胝卧囶}(含答案)
- 美術基礎模擬試題(含參考答案)
- 華東師范大學《外國人文經(jīng)典(上)》2021-2022學年第一學期期末試卷
- 肥胖課件教學課件
- 2023年4月2日湖北事業(yè)單位聯(lián)考C類《職業(yè)能力傾向測驗》試題
- PEP人教版小學英語六年級下冊單詞表(含音標)
- 主持課課件教學課件
- 第四節(jié)-全電路歐姆定律
- 2024湖北省聯(lián)合發(fā)展投資集團限公司招聘221人高頻難、易錯點500題模擬試題附帶答案詳解
- 中學生的儀容儀表規(guī)范主題班會課件
- GB/T 44672-2024體外診斷醫(yī)療器械建立校準品和人體樣品賦值計量溯源性的國際一致化方案的要求
- Unit 2 Bridging Cultures Reading for writing 課件-高中英語(2019)選擇性必修第二冊
- 2024年全國統(tǒng)一高考數(shù)學試卷(新高考Ⅰ)含答案
評論
0/150
提交評論